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ABSTRACT
Online social network providers have become treasure troves of in-
formation for marketers and researchers. To profit from their data
while honoring the privacy of their customers, social networking
services share ‘anonymized’ social network datasets, where, for
example, identities of users are removed from the social network
graph. However, by using external information such as a refer-
ence social graph (from the same network or another network with
similar users), researchers have shown how such datasets can be
de-anonymized. These approaches use ‘network alignment’ tech-
niques to map nodes from the reference graph into the anonymized
graph and are often sensitive to larger network sizes, the number of
seeds, and noise — which may be added to preserve privacy.

We propose a divide-and-conquer approach to strengthen the
power of such algorithms. Our approach partitions the networks
into ‘communities’ and performs a two-stage mapping: first at
the community level, and then for the entire network. Through
extensive simulation on real-world social network datasets, we
show how such community-aware network alignment improves de-
anonymization performance under high levels of noise, large net-
work sizes, and a low number of seeds. Even when nodes cannot
be explicitly mapped, the community structure can be mapped be-
tween both networks, thus reducing the anonymity of users. For
example, for our (real-world) Twitter dataset with 90,000 nodes,
20% noise, and 16 seeds, the state-of-the-art technique reduces
anonymity by 0 bits, whereas our approach reduces anonymity by
9.71 bits (with 40% of nodes mapped).

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection
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1. INTRODUCTION
Online social networks have exploded in popularity. For exam-

ple, Facebook has over a billion active users [14], Google+ has
over 350 million active users, and Twitter has close to 300 mil-
lion active users [18]. Social network providers host vast amounts
of personal information and relationship information between their
users and have become a treasure trove sought by marketers and
researchers alike [37]. The availability of rich social data has
led to various applications, such as targeted online advertisements,
the study of human behaviors (computational social science), and
health care [33, 37]. Because of its value across various appli-
cations, such social data is often shared or sold to academic re-
searchers or third-party companies. To protect the privacy of their
users while exploiting the value of this data, social networking ser-
vices attempt to ‘anonymize’ social network data before selling or
sharing such information. For example, the services may provide
social-network structure but remove people’s identities and try to
add some ‘noise’ by modifying relationships and attributes to a cer-
tain extent.

Various approaches have been proposed to ‘de-anonymize’ users
in the dataset using external knowledge about the users [5, 27,
37, 53]. For example, an attacker may have access to the social-
network structure with real identities (but not other sensitive at-
tributes) by crawling publicly available relationships on the same
site or a different social networking site with a similar customer
base. Narayanan and Shmatikov have shown how the social struc-
ture from one site, such as Flickr, can be used to re-identify
anonymized users on another site, such as Twitter [37]. In gen-
eral these approaches perform a ‘network alignment’ between the
two networks, mapping the nodes in the anonymized network to the
nodes with identities in the reference network. Researchers have
also looked at stronger adversarial models where the attacker has
attribute information from the reference network [29, 36], and in
such cases de-anonymization is easier because of the additional in-
formation. In this work we study the problem of de-anonymization
using network alignment without access to additional attributes,
but where the two networks have a high level of overlap, either
by crawling the same network or another network with a similar
user base.

The problem of aligning two networks is closely related to the
graph isomorphism problem. While this problem cannot yet be
efficiently solved in the general case [16], the above-mentioned
techniques are reasonably effective when aligning social-network
graphs because they use heuristics that exploit the unique structural
properties of real-world networks such as heavy-tailed degree dis-
tributions and the presence of large cliques. Most techniques start
from known common identities in the two graphs — ‘seeds’ — and
then grow these mapped regions by comparing and matching the



local (microscopic) properties in each graph. As we show, these
techniques require a high number of seeds and are often sensitive
to high levels of noise (e.g., where a certain fraction of edges is
‘rewired’). Furthermore, as the networks grow, microscopic struc-
tures are increasingly replicated across the entire network, making
it hard to map nodes based solely on local properties.

Our contributions. In this paper we leverage ‘mesoscopic’1

properties of social networks for enhanced de-anonymization that
is more robust to noise and a low number of seeds, and scales eas-
ier with large network size. Our approach leverages ‘community
detection’ techniques to partition the networks into ‘communities’,
i.e. dense subgraphs that capture social structure [15,17]. Our pro-
posed approach divides the problem into smaller sub-problems that
can be solved by leveraging existing network alignment methods
recursively on multiple levels. First, our approach maps the com-
munity structure of two graphs (which may overlap imperfectly) by
considering the community structure as a coarse-grained graph. It
then applies the network mapping technique to the nodes inside
each community (along with a ‘seed enrichment’ phase) and fi-
nally to the entire graph. Through extensive simulations on real
social network datasets, we suggest that our ‘community boosting’
technique generically provides a significant improvement to mi-
croscopic mapping algorithms, such as the one by Narayanan and
Shmatikov (subsequently we refer to their algorithm as the “NS”
algorithm) [37], and enhance their performance in a way that is
more robust to noise and large network sizes.

Another major contribution is our analysis of the ‘degree of
anonymity’ of users in the graph. Even when the explicit mapping
of nodes is far from complete, we show that the mapping of commu-
nities may markedly reduce the degree of anonymity of users, since
the probability distributions of potential mappings results in less
uncertainty thanks to the mappings between communities. For ex-
ample, we show that for our Twitter dataset with 90,000 nodes, 15%
edge noise, and 16 seeds that the NS technique reduces anonymity
by 2.6 bits (with 33% of nodes explicitly mapped), whereas our
approach reduces anonymity by 13.17 bits (with 65% of nodes
mapped). For the same dataset, with 20% edge noise and 16 seeds,
the NS technique reduces anonymity by 0.0 bits (with almost no
node explicitly mapped), whereas our approach reduces anonymity
by 9.71 bits (with 40% of nodes mapped).

2. DEFINITIONS AND ATTACK MODELS
In general, de-anonymization is defined as “a data mining strat-

egy in which anonymous data is cross-referenced with other data
sources to re-identify the anonymous data source”.2 The idea is to
collect enough information about an anonymous individual and en-
rich his/her profile. This profile can then be linked to other public
information to attach an identity to the data. Social network de-
anonymization usually concerns the problem of cross-referencing
two or more social graphs to enrich anonymous users’ profiles and
re-identify them. Some attacks use only network structures, while
others exploit user attributes such as user names and group mem-
berships [29, 37, 53]. We now formalize the models and definitions
used in our work.

2.1 Definitions and assumptions

1“Mesoscopic” is a term in physics used to refer to a granularity
between microscopic and macroscopic.
2http://whatis.techtarget.com/definition/de-
anonymization-de-anonymization

We interchangeably use the terms “network”, “node”, and “link”
with “graph”, “vertex”, and “edge”, respectively. All networks we
use in this paper are undirected.

DEFINITION 1. A graph, G〈V,E〉 is a set of vertices V that
represents the users in the network and a set of undirected edges
E ⊆ {e = (u, v) : u, v ∈ V } that represents links between users.
In a social network, for example, edges would correspond to social
relationships. We denote the degree of a node by kv . Let N = |V |
be the total number of nodes in G.

DEFINITION 2. A graph G’s community structure (C) is a dis-
joint partition of vertices in G, namely C = {c1, c2, . . . , ck},
where ci 6= ∅ and ci ∩ cj = ∅ if i 6= j for i, j ∈ {1, 2, . . . , k}.
While there are many alternative definitions of communities [4,
15, 40], in this paper communities are defined by Infomap algo-
rithm [45], which finds a partition that minimizes the average num-
ber of bits per step required to describe trajectories of random
walkers.

2.2 Attack model
Online social network providers release anonymized social net-

works to third-parties for various purposes including targeted ad-
vertising, developing new applications, academic research, and
public competition [20,43]. We assume the recipient of this data, if
malicious, may try to de-anonymize the social network by explic-
itly mapping nodes in the extreme case and/or reducing the uncer-
tainty of mappings to the greatest extent possible.

We assume the adversary has access to two networks, G〈V,E〉
and G′〈V ′, E′〉, where V ∩ V 6= ∅, and E ∩ E′ 6= ∅. We fo-
cus on the cases where V ≈ V ′ and E ≈ E′, i.e. where the
vertices and edges are approximately the same. The difference in
these sets is characterized more formally by a ‘noise’ parameter
(see Section 6.2).

One of these networks is anonymized and contains sensitive pri-
vate information associated with the (anonymized) nodes in the
graph. The goal of an attacker is to align the anonymized network
with the other, ‘reference’ network, re-identify anonymized users,
and reveal the private information obtained from the anonymized
network. If both networks are anonymized, the problem changes
from re-identification to profile enrichment where the attacker tries
to align two networks and collect more data about the anonymous
users.

3. BACKGROUND

3.1 Re-identification algorithm by Narayanan
and Shmatikov (NS)

Our algorithm is designed to leverage existing mapping methods.
For our evaluation, our algorithm is built upon the re-identification
algorithm by Narayanan and Shmatikov [37]. Their algorithm runs
in two stages: ‘seed detection’ and ‘propagation’. In the seed-
detection step the algorithm maps a small number of users (seeds)
between two networks by searching for unique subgraphs. The
propagation step expands the set of matched users by incrementally
comparing and mapping the neighbors of the previously mapped
seeds.

3.1.1 Seed identification
Narayanan et al. [35, 37] have proposed a seed identification al-

gorithm that randomly samples a subset of k-cliques from the refer-
ence graph and finds the corresponding cliques in the other graph.
For a chosen clique, the algorithm examines the degree sequence of

http://whatis.techtarget.com/definition/de-anonymization-de-anonymization
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the k nodes in the given clique and the number of common neigh-
bors between each of

(
k
2

)
pairs of users. For each candidate clique

in the other graph, the algorithm compares the two sequences and
decides based on an error parameter, θ, whether they are the same
people or not. We use a similar approach for identifying initial
seeds, which also helps in mapping communities (see Section 4.1).

3.1.2 Propagation
In the propagation step, the algorithm expands the set of iden-

tified seeds. In each iteration, the algorithm randomly picks an
already-mapped node pair (u, u′) ∈ M , where u ∈ V , u′ ∈ V ′,
and M is the set of mappings. From the set of u’s unmapped
neighbors, it picks a random node v then compares it with each
unmapped node (v′) in the set of u′’s unmapped neighbors. The
similarity S between v and v′ is defined as the number of v’s neigh-
bors that are already mapped to the neighbors of v′, divided by the
square root of its degree, namely

S(v, v′)=
|{(w,w′) : w∈N (v);w′∈N (v′); and (w,w′)∈M}|√

kvkv′
,

where N (v) is the set of v’s neighbors. After calculating S for all
potential candidates (the unmapped neighbors of u′) and creating
an ordered list of the scores (L), the algorithm identifies the best
(v′1) and the second-best candidate (v′2) that have the highest scores.
v′1 is accepted as the counterpart of v if its score is sufficiently better
than that of v′2. The uniqueness of the best candidate is measured
by ‘eccentricity’ as defined by

ecc(L) =
S(v, v′1)− S(v, v′2)

σ(L)
,

where L is the ordered list of the similarity scores (S) of the un-
mapped neighbors of u′, and σ(L) is the standard deviation of the
values in L.

3.2 Community detection
Community detection (or graph partitioning) has received much

attention from various fields, because community structure is a
common characteristic of a wide variety of networks across do-
mains and communities usually correspond to important subunits
of the systems. For instance, the communities in social networks
correspond to social circles and those in biological networks cor-
respond to functional modules. Originally, graph partitioning was
introduced to solve the problem of optimal allocation of processes
in a distributed computing context [24]. Since then, graph parti-
tioning and community detection has been actively studied across
disciplines [15, 42, 46]. Although there is no concrete definition
of a community that is agreed upon, communities usually refer to
groups of nodes (people) that are densely connected to each other
while having lesser connections to nodes residing outside of the
community. A large number of community detection methods have
been developed and they are widely applied to many domains of
science [4, 15, 44].

Although it is known that communities often overlap [4, 40], we
use disjoint, non-overlapping communities to simplify the prob-
lem. Among the variety of community detection methods, we
employ the Infomap algorithm [1, 45] here because it is one of
the most widely accepted disjoint community detection algorithm;
it was shown to excel in tests using synthetic benchmark net-
works [31, 32]. Also note that our goal is slicing the network into
smaller, dense chunks, which may not correspond to meaningful
social groups. In principle, myriad other community detection (or
graph partitioning) approaches can be adopted to our framework,
although we leave such exploration to future work.

3.3 Degree of anonymity
Pfitzmann and Kohntopp [41] defined “anonymity” as the state

of being not identifiable within a set of subjects, the anonymity
set. Chaum [10] first characterized the anonymity set as the mea-
sure of anonymity. This measurement has been used by several
networks that provide anonymity for senders or receivers of mes-
sages [8, 25, 39]. Anonymity set size, however, does not take into
account that different members may be more or less likely to send
or receive messages. Based on a particular attack, also, these prob-
abilities may differ. Serjantov and Danezis [47] and also Diaz et
al. [12] used entropy to define degree of anonymity achieved by
the users of a system towards particular attacker. This measurement
depends on the distribution of probabilities and not simply the size
of the anonymity set. The entropy of the system after the attack is
compared against the maximum entropy, in which all N users are
likely to be the originator of the message with equal probability 1

N
.

The entropy of the system is defined as:

H(X) = −
N∑
i=1

pi log pi,

where H(X) is the entropy of the network, N is the number of
nodes in the network, and pi is the probability associated with node
i. As the maximal entropy is Hmax = logN , the attacker’s infor-
mation gain is Hmax−H(X), and thus the degree of anonymity is
defined as the normalized entropy of the system:

A(X) := 1− Hmax −H(X)

Hmax
=
H(X)

logN
,

where 0 ≤ A(X) ≤ 1. This value quantifies the amount of infor-
mation the system is hiding. For instance,A(X) = 1 indicates that
the users in the network are completely anonymous. A(X) = 0.5
indicates that ‘half the bits’ of privacy are lost compared to the uni-
form distribution, which corresponds to logN bits of privacy.

4. OUR APPROACH: COMMUNITY-
ENHANCED DE-ANONYMIZATION

The key notion of our community-based de-anonymization
framework is that network communities provide an effective way
to divide-and-conquer the problem of de-anonymization, particu-
larly because communities are known to capture meaningful, meso-
scopic structural relationships even in the presence of noise [31].
After dividing the reference and anonymized graphs into commu-
nities, these communities can be mapped first, and then users can
be matched and re-identified for each corresponding community.
In particular, our approach can employ an existing ‘community-
blind’ mapping algorithm such as the NS algorithm for community-
and node-level mapping. Our approach is thus a ‘community-
aware’ mapping algorithm built upon community-blind mapping
algorithms.

Figure 1 illustrates our proposed network alignment framework.
Our algorithm has four steps: 1) community detection, 2) com-
munity mapping, 3) seed enrichment, and 4) global propagation.
These steps are explained next.

4.1 Community mapping
The first step of our algorithm is detecting communities. As

mentioned in Section 3.2, we use Infomap to slice both the ref-
erence and the anonymized networks into smaller, denser chunks.
Nevertheless, any community detection (or graph partitioning) ap-
proach can be adopted to our framework. The next step is mapping
communities that are found in the previous step. Our approach uses



1) Detecting communities 2) Creating graph of communities
and mapping communities 

3) Community-based seed 
enrichment and mapping 
individual nodes inside mapped 
communities

4) Global propagation: 
mapping remaining nodes in 
the entire graph

Network 1

Network 2

Figure 1: An overview of our approach where 1) each of two social graphs is divided to smaller partitions — communities; 2)
communities of these two graphs are mapped; 3) nodes inside mapped communities are matched; and 4) NS propagation algorithm
runs on the whole network to map remained unmapped nodes.

1

two strategies to map communities: (1) using already-known seeds
and (2) using the network of communities. Once some communi-
ties have been mapped (forming seeds at the community level), the
community-blind propagation algorithm is applied to the commu-
nity graph to expand the set of mapped communities.

4.1.1 Identifying seed communities
Before communities can be mapped, the propagation algorithm

needs some pre-identified seed mappings. After detecting com-
munities in the two networks, communities associated with seed
nodes can be mapped to each other. However, conflicts are pos-
sible when two seeds with two different communities in the first
network are mapped to one community in the other network. Con-
flicts are minimized by simply counting the number of times that
two communities are mapped together. For each community in the
reference network, all possible mappings are listed based on counts
in descending order and this community is mapped to the commu-
nity on top of the list. There are some cases where one community
is mapped to two different communities with the same scores. In
these cases, a mapping is picked at random.

4.1.2 Mapping communities by creating a network
of communities

The community structure itself can be considered as a high-level,
coarse-grained graph; we consider each community as a node and
the connection between communities as edges. This perspective
allows us to directly reuse community blind mapping algorithms
such as the NS algorithm to map communities.

Given a graphG, we create a weighted undirected graph of com-
munities, G∗, where each community is a node and a weighted
edge between two communities represents the number of connec-
tions between nodes in two communities.

In our framework, a community-blind mapping algorithm is run
on the network of communities and is fed with some seed commu-
nities. Since we use NS in our evaluation, we propose a slight im-
provement to the NS propagation algorithm to exploit the weights
in the graph of communities. As in the original NS algorithm, our
“weighted propagation” algorithm starts with two graphs G∗1 and
G∗2. At each iteration the algorithm randomly picks a neighbor
(µ∗) of already-mapped seeds (U∗). We modify the similarity score
function so that it includes the weight of edges in the weighted

A
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B

0.3
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Figure 2: An example of mapping nodes of two weighted undi-
rected networks using the ‘weighted propagation’ algorithm.
The numbers on the edges show the edge weights.

graphs. We tested different similarity functions and found the fol-
lowing to be more effective:

S̃(µ∗, ν∗) =

∑
(p∗,q∗)∈N (µ∗,ν∗) (1− |√w(µ∗,p∗) −

√
w(q∗,ν∗)|)√

d(µ∗)d(ν∗)
(1)

where N (µ∗, ν∗) is the set of already mapped pairs among the
neighbors of µ∗ and ν∗. w(µ∗,p∗) is the weight of the edge between
µ∗ and p∗.

Figure 2 illustrates an example where the mapping algorithm
tries to align node A in the left graph to a node in the right graph.
Three of A’s neighbors are already mapped. The algorithm starts
with these and computes the similarity score for each neighbor of
the mapped nodes in the right graph, i.e. S̃(A,B) and S̃(A,B′).
Using the score function of the original NS propagation algorithm,
S̃(A,B) = S̃(A,B′) and the algorithm cannot mapA to any node
in the right graph. By contrast, here S̃(A,B) would be larger than
S̃(A,B′), and thus A is correctly mapped to B (with a suitable
eccentricity threshold).



4.2 Seed enrichment and local propagation
One of the major benefits from the community decomposition

and mapping is that additional seeds can be identified. Seeds are
usually identified based on their uniqueness at a global level; com-
munities offer a much more narrow search space for seeds, which
may have otherwise not looked unique at the global scale. We call
this step of finding more seeds leveraging community information
“seed enrichment”. Following seed enrichment, the community-
blind mapping algorithm is applied to each pair of matched com-
munities using the enriched set of seeds.

We propose the following approach to identify seeds at the com-
munity level, which is based on two distance metrics defined over
nodes’ degrees (d), and the clustering coefficients (cc):

Dd(vi, vj) =
|d(vi)− d(vj)|

max(d(vi), d(vj))

Dcc(vi, vj) =
|cc(vi)− cc(vj)|

max(cc(vi), cc(vj))

The clustering coefficient is a property of a node in a network
and quantifies how close its neighbors are to being a clique. It can
be quantified as the fraction of pairs of the node’s neighbors that
are connected to each other by edges. The clustering coefficient is
between zero and one; if the neighborhood is fully connected, it is
1 and if there are few connections in the neighborhood, its value is
close to 0.

These two metrics are computed and tested between each pair of
nodes across the mapped communities. These nodes are matched
and identified as seeds if either their degree or their clustering coef-
ficients are similar enough and above a certain eccentricity thresh-
old.

For each pair of mapped communities, the community-blind
mapping algorithm is performed locally — only considering the
nodes inside these communities. This algorithm takes two sub-
graphs (communities)Gc1〈Vc1 , Ec1〉 andGc2〈Vc2 , Ec2〉 from two
networks G1 and G2 and the set of seeds in these communities.
This algorithm can also be run in parallel on each pair of mapped
communities to increase performance.

4.3 Global propagation
The last step in our framework applies the community-blind

mapping algorithm to the whole network using all the currently
mapped nodes as seeds. This step is necessary because all com-
munities may not be correctly mapped or mapped at all; there-
fore, some nodes are not chosen to be re-identified. Running the
community-blind mapping algorithm globally expands these map-
pings. In short, community-blind mapping algorithms run only this
global propagation step, while our approach adds the previous steps
as intermediate steps resulting in a community-aware mapping al-
gorithm.

5. DEGREE OF ANONYMITY
In this section, we propose a method of estimating the degree

of anonymity of users in an anonymized network, given an error
(noise) model that describes how the reference graph would differ
from the anonymized graph. Throughout this section, we assume
that we are given an anonymized graph and an error model. We
compute the degree of anonymity by observing that the community
structure may reveal information about true mappings even when
nodes cannot be mapped by de-anonymization algorithms.

Consider two graphs G(V,E) (reference) and G′(V ′, E′)
(anonymized). u ∼ u′ means that the mapping between u and
u′ is true. The set of true mappings is:

Mt = {(u, u′) : u ∈ V ;u′ ∈ V ′; and u ∼ u′}.

We denote the algorithmically detected mapping between u and u′

as u↔ u′. The set of mappings is:

Ma = {(u, u′) : u ∈ V ;u′ ∈ V ′; and u↔ u′}.

We denote the community mapping between c and c′ as c ↔ c′.
The set of community mappings is:

Mc = {(c, c′) : c ∈ C; c′ ∈ C′; and c↔ c′}

where C and C′ are the sets of communities in G and G′.
Here, we simplify the problem by ignoring all other information

we can potentially obtain from the graphs, focusing only on the
vertex sets and mappings. Given two graphs and mappings, we
define the anonymity for a user u ∈ V as the entropy over the
probability distribution of potential mappings being true for user u:

H(u) = −
∑
u′∈V ′

P (u ∼ u′|Ma) logP (u ∼ u′|Ma), (2)

where P (u ∼ u′) is the marginal probability that a node u′ ∈ V ′
is actually the true mapping with a given node u ∈ V . If Ma =
∅ or does not provide any information, we assume that P (u ∼
u′|Ma) = 1

N
for every u′ and H(u) reaches the maximum value

of logN . On the other hand, if we know that the algorithm works
perfectly, namely u↔ u′ ⇐⇒ u ∼ u′, then P (u ∼ u′|Ma) = 1
when u↔ u′ and 0 otherwise. In this case H(u) becomes zero.

Likewise, given Ma and Mc, we define the anonymity for a user
u ∈ V as the entropy over the probability distribution of potential
mappings being true for user u:

H(u) = −
∑
u′∈V ′

P (u ∼ u′|Ma,Mc) logP (u ∼ u′|Ma,Mc).

(3)
We define the normalized degree of anonymity for user u as:

A(u) :=
H(u)

Hmax
, (4)

where Hmax = logN is the maximum entropy.
Finally, we define the degree of anonymity for the whole system

by averaging the degree of anonymity of all users in the network:

A(G) :=

∑
u∈V A(u)

N
. (5)

Next, we show how the degree of anonymity can be estimated in
practice. Our approximations and simplifications are focused on
estimating the upper bound of the degree of anonymity.

5.1 Degree of anonymity of community-blind
de-anonymization algorithm

We define V ′− (resp. V−) as the set of nodes in V ′ (resp. V ) that
have not been mapped by the algorithm:

V ′− = {u′ ∈ V ′ : @u ∈ V, u↔ u′}.

If a community-blind algorithm is employed for de-anonymizing
users, P (u ∼ u′|Ma) for a given u ∈ V can be assigned values
for all u′ ∈ V ′ based on the following cases.

(1) If u is mapped by the algorithm to z′, the vertices u′ ∈ V ′ can
be partitioned as:



a) The mapped node z′, i.e. (u, z′) ∈ Ma. In this case we need
to compute P (u ∼ z′|u ↔ z′) and this probability, given a
graph and an error model, can be estimated by measuring how
often a claimed mapping is correct in simulations. Let this
value be pmap .

b) The remaining nodes that were not mapped to u, i.e. y′ such
that (u, y′) /∈ Ma. We need to compute P (u ∼ y′|u ↔
z′, z′ 6= y′). This value can be estimated as 1−pmap

|V ′|−1
, which

assumes that any node in this set is the correct mapping with
uniform probability.

(2) If u is not mapped by the algorithm, i.e. (u, u′) /∈ Ma, we
consider the correct mapping to be within the entire vertex set
V ′ with the same probability. That is, P (u ∼ u′|u ∈ V−) =
1/|V ′|.

5.2 Degree of anonymity of community-aware
de-anonymization algorithm

The community mapping can reveal additional information
about the true mapping, and thus several more cases need to be
considered as compared to the community-blind algorithm. We de-
fine C′− (resp. C−) as the set of communities in G′ (resp. G)
that have not been mapped. c ↔ c′ represents that the algo-
rithm has mapped community c in G to community c′ in G′. If a
community-aware algorithm is employed for de-anonymizing users
P (u ∼ u′|Ma,Mc) can be assigned values for all u′ ∈ V ′ based
on the following cases (again this analysis presents a simpler case
analysis as described earlier):

(1) If u is mapped to some node z′ by the algorithm, and the com-
munity c of u is also mapped to the community c′ of z′, the
vertices V ′ can be partitioned as:

a) The mapped node z′. In this case we need to compute P (u ∼
z′|u ↔ z′, c ↔ c′, u ∈ c, z′ ∈ c′), i.e. how often a claimed
mapping is correct (in this circumstance). This probability can
be estimated through simulation. Let this value be pmap,1a,
where the second subscript “1a” refers to Case 1a.

b) The remaining nodes y′ within c′ that were not mapped to u.
In this case, we need to compute P (u ∼ y′|u ↔ z′, c ↔
c′, y′ 6= z′, u ∈ c, z′ ∈ c′, y′ ∈ c′). The probability that a
node is mapped to any other node in the same community es-
timated through simulation as pmap,1b. Thus P (u ∼ y′|u ↔
z′, c↔ c′, y′ 6= z′, u ∈ c, z′ ∈ c′, y′ ∈ c′) =

pmap,1b

|c′|−1
.

c) The remaining nodes r′ that are not in c′ (i.e. in G′ \ c′).
In this case, we need to compute P (u ∼ r′|u ↔ z′, c ↔
c′, r′ /∈ c′, u ∈ c, z′ ∈ c′). The probability that a node is
mapped to any other node not in community estimated through
simulation as pmap,1c. Thus P (u ∼ r′|u ↔ z′, c ↔ c′, r′ /∈
c′, u ∈ c, z′ ∈ c′) =

pmap,1c

|G\c′| .

We note that pmap,1a + pmap,1b + pmap,1c = 1.
(2) If u is mapped to some node z′ by the algorithm, and the com-

munity c of u is mapped to some community c′ which is different
from community z′, the vertices u′ can be partitioned as:

a) The mapped node z′. In this case we need to compute P (u ∼
z′|u ↔ z′, c ↔ c′, u ∈ c, z′ /∈ c′), i.e. how often a claimed
mapping is correct (in this circumstance). This probability can
be estimated through simulation. Let this value be pmap,2a.

b) The nodes y′ within c′. In this case, we need to compute
P (u ∼ y′|u ↔ z′, c ↔ c′, u ∈ c, z′ /∈ c′, y′ ∈ c′), the
probability that a node is mapped to any node in the mapped

community. This value can be estimated through simulation
as pmap,2b. Thus P (u ∼ y′|u ↔ z′, c ↔ c′, u ∈ c, z′ /∈
c′, y′ ∈ c′) =

pmap,2b

|c′| .

c) The remaining nodes r′ that are not in c′ (i.e. in G′ \ c′)
and are not mapped to u. In this case, we need to compute
P (u ∼ r′|u ↔ z′, c ↔ c′, r′ 6= z′, u ∈ c, r′ /∈ c′, z′ /∈ c′),
the probability that a node is mapped to any other node not in
community. This value can be estimated through simulation
as pmap,2c. Thus P (u ∼ r′|u ↔ z′, c ↔ c′, r′ 6= z′, u ∈
c, r′ /∈ c′, z′ /∈ c′) =

pmap,2c

|G\c′|−1
.

We note that pmap,2a + pmap,2b + pmap,2c = 1.
(3) If u is mapped to some node z′ by the algorithm, but the com-

munity c of u is not mapped to any community inG′, the vertices
V ′ can be partitioned as:

a) The mapped node z′. In this case we need to compute P (u ∼
z′|u ↔ z′, c ∈ C−, u ∈ c), i.e. how often a claimed map-
ping is correct (in this circumstance). This probability can be
estimated through simulation. Let this value be pmap,3a.

b) The remaining nodes that were not mapped to u, i.e. r′ such
that (u, r′) /∈ Ma. We need to compute P (u ∼ r′|u ↔
z′, z′ 6= r′, u ∈ c, c ∈ C−). Following a mapping of the
anonymized graph, This value can be estimated as 1−pmap,3a

|V ′|−1
,

which assumes that any node in this set is the correct mapping
with uniform probability.

(4) If u is not mapped to any node in G′ by the algorithm, and the
community c of u is also not mapped to any community in G′,
the vertices V ′ can be partitioned as:

a) We consider the correct mapping to be within the entire vertex
set V ′ with the same probability. That is, P (u ∼ u′|u ∈
V−, u ∈ c, c ∈ C−) = 1/|V ′|.

(5) If u is not mapped to any node in G′ by the algorithm, but the
community c of u is mapped to a community c′, the vertices u′

can be partitioned as:

a) The nodes y′ within c′. In this case, we need to compute
P (u ∼ y′|u ∈ V−, u ∈ c, c ↔ c′, y′ ∈ c′), the probability
that a node is mapped to any node in the mapped community.
This value can be estimated through simulation as pmap,5a.
Thus P (u ∼ y′|u ∈ V−, u ∈ c, c↔ c′, y′ ∈ c′) =

pmap,5a

|c′| .

b) The remaining nodes r′ that are not in c′ (i.e. in G′ \ c′).
In this case, we need to compute P (u ∼ r′|u ∈ V−, u ∈
c, c ↔ c′, r′ /∈ c′), the probability that a node is mapped to
any other node not in community. This value can be estimated
as 1−pmap,5a

|G\c′| , which assumes that any node in this set is the
correct mapping with uniform probability.

5.3 Caveats
The key aim of our measure is estimating the upper bound of

the degree of anonymity, to quantify the minimum possible dam-
age that may be caused by the de-anonymization attacks. Thus one
may need to devise more sophisticated and realistic methods to ac-
curately calculate the degree of anonymity that is closer to reality.
We simplified the problem by introducing several approximations.
First of all, we ignored prior information that can be obtained from
network structure. Although we may be able to condition the prob-
abilities of mappings given prior knowledge of the network struc-
ture, we decided this approach was overly complex for our main
goal of showing the relative performance of algorithms. Another



caveat is that we approximate the real probability for each case by
running simulations that assume a specific ensemble of networks
(e.g. an ensemble of networks with the same number of nodes,
edges, noise level, and the type of noise). Our ensemble-simulation
approach provides a way to estimate the breach of privacy with just
one network, but at the same time, the parametrization of the refer-
ence graph may not coincide with the actual error model in real-life,
and our estimation may not be accurate.

In addition, more fine-grained case analysis can be applied
for a better estimate of the degree of anonymity. For example,
Cases (1).b and (2) can be further split into nodes that were mapped
to some other node or not mapped to any node at all. We have com-
puted the degree of anonymity under this model and observed that
there is only a slight difference between the two methods. We stick
to the simpler model in this paper for ease of exposition (especially
as it blows up the number of cases described in Section 5.2), and
thus in Section 7 we show results only for the simpler model. Also
note that the simpler model provides the upper bound of the degree
of anonymity in our framework.

6. EVALUATION
We perform simulation-based experiments using real-world net-

work datasets. For each experiment, we prepare a copy of the orig-
inal network, partially alter its structure, and compare the network
alignment performance of two approaches — community-aware
and community-blind — using the networks. We also perform ex-
periments on partially overlapping networks where some percent-
age of users from each network — original network and the edge-
altered noisy network — are removed and thus two networks have
partially different user sets.

6.1 Data sets
We use three real-world networks: (i) A collaboration net-

work [38], which is a network of coauthorships between scientists
who have posted preprints on the arXiv Condensed Matter E-Print
Archive. In this network two authors are connected if they wrote
at least one paper together. The network is constructed from all
preprints posted between January 1, 1995 and March 31, 2005.
This network has 36,458 nodes and 171,735 edges; (ii) A Twit-
ter mention network [52], which captures the connections between
users who mutually mentioned each other at least once between
March 24th, 2012 and April 25th, 2012. We first extract the largest
connected component from this graph and partition it into four
graphs using the METIS graph partitioning algorithm [2] to ob-
tain a smaller, more manageable network. We use one of the graph
partitions with 90,332 nodes and 377,588 edges; and (iii) Using the
same Twitter mention network, we also partition it into nine graphs
using the METIS graph partitioning algorithm to obtain a much
smaller network with 9,745 nodes and 50,164 edges. We show the
impact of size on our approach using these two networks.

6.2 Experimental setup

6.2.1 Generating noisy anonymized networks
We replicate the original network and assume that it is

anonymized. First, we assume that two networks have the same
set of nodes while having different but overlapping sets of edges.
We prepare an array of networks with different levels of noise to in-
vestigate the impact of noise on the performance of the algorithms.
We use a common edge-rewiring method [59], which we describe
in Algorithm 1. Briefly, the level of noise Θ is the portion of edges
that are rewired. For instance, Θ = 0.10 means that 10% of the
edges are rewired.

Algorithm 1 Adding noise through edge rewiring
Input: G1〈V1, E1〉 and mixing parameter Θ
Output: G2〈V2, E2〉: A noisy version of G1 where V1 = V2 but
E1 6= E2

copy G1 to G2

while num_rewired_edges ≤ Θ× |E1| do
randomly choose an edge e1 ∈ E1

find e2 = (u, v) ∈ E2 which is e1 = (u, v)’s corresponding edge in
E2

remove e2 = (u, v) from E2: E2 ← E2 \ e2
randomly choose a non-existent edge e = (u, v) to be added: E2 ←
E2 ∪ e

end while
return (G2〈V2, E2〉)

We use the following levels of noise:
{0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}. While we do ex-
amine scenarios with high noise, our results suggest that noise
levels greater than 20% seem to set fundamental limitation on the
possibility of de-anonymization through structure alone. The range
of noise in our simulations is greater than the previously observed
noise in previous simulation study [36, 37].

For each noise level, we generate an ensemble of 10 networks for
each of the real-world networks. We run the InfoMap community
detection algorithm [44] on every graph to detect the community
structure.

We also conduct experiments for when the two networks are not
identical to each other and may have different sets of nodes and
edges. After generating noisy networks using the ‘edge-rewiring
method’, we remove some percentage of the nodes randomly from
both the original and the noisy networks so that if the noisy net-
work has been generated by re-wiring 10% of edges, we addition-
ally remove 5% of the nodes from each of the original and the noisy
networks. Thus, the resulting networks would have different and
overlapping user and edge sets.

6.2.2 Setup for calculating degree of anonymity
The attacker needs an estimate of the performance of our de-

anonymization technique to compute the degree of anonymity. We
mimic this process by performing several experiments (10 runs) on
each data set with a specific level of noise and number of seeds
and obtained the overall performance of the de-anonymization al-
gorithm on that particular data set and settings. Then, we perform
10 new de-anonymization experiments on each data set and use the
success probabilities from the previous experiments to calculate the
degree of anonymity for the data set. Finally, we average the de-
gree of anonymity values for these 10 experiments. We emphasize
that the simpler version of the degree of anonymity calculation re-
quires less prior knowledge about the algorithm’s performance and
it provides an upper bound for the degree of anonymity.

6.2.3 Eccentricity thresholds
For the node-mapping algorithms, we set the eccentricity thresh-

old to 0.1 for all experiments. However, for community mapping,
we set this threshold to 0, because we observed that having more
mapped communities always gives more correctly mapped nodes.
Consequently, this threshold also results in more false positives.
However, the effect of false positives in community mapping is
limited.

6.2.4 Initial seeds
We assume the attacker has some prior knowledge about a small

number of nodes. To simplify the problem we provide the same
set of initial seeds for both community-blind (original NS) and



community-aware algorithms instead of running a sophisticated
seed detection algorithm. We identify four cliques in both networks
(original and perturbed) and randomly choose some of them as
seeds. To investigate the sensitivity to the initial seeds, we choose
4, 8, 16, 32, 64, 128 nodes as seeds (they correspond to 1, 2, 4, 8
and 16 cliques respectively). The NS propagation algorithm uses
these seeds to perform global propagation while our algorithm em-
ploys them to map communities, then performs community-based
seed enrichment before running the global propagation step.

6.3 Measuring performance
Although degree of anonymity is the better metric for measuring

performance of de-anonymization algorithms, we also measure the
number of correctly mapped nodes and incorrectly mapped nodes
(as done by Narayanan and Shmatikov [37]), normalized by the
total number of nodes in the networks, which we define below.

The success rate Ps is defined as the percentage of correctly re-
identified users in the network.

DEFINITION 3. Success rate of de-anonymization. Given
graphsG〈V,E〉 andG′〈V ′, E′〉, the set of detected mappingsMa,
and the true mapping Mt, the success rate Ps is

Ps =
|Ma ∩Mt|
|V ∩ V ′| .

Similarly, the error rate Pe is defined as the percentage of incor-
rectly mapped users.

DEFINITION 4. Error Rate of de-anonymization. Given the
same G,G′,M , and Mt as in the definition of the success rate,

Pe =
|Ma \Mt|
|V ∪ V ′| .

7. RESULTS
We now report the performance of two algorithms (community-

blind NS global propagation vs. our community-aware algorithm).
Our results demonstrate that our community-based method can
boost the performance of de-anonymization, particularly when (1)
there are fewer number of initial seeds, (2) the system size is large,
and (3) the noise level is high.

7.1 Impact of noise, seed size, and network
size on overall performance

7.1.1 Impact of noise
Figure 3 shows the degree of anonymity A(G) (top row), suc-

cess rate Ps (middle row), and error rate Pe (bottom row) in terms
of noise, number of seeds, and network size.3 We can see that
community-aware algorithm is much more effective in decreasing
the anonymity of users in all the networks. For example, in the
collaboration network, for all the levels of noises from 0 to 20%
(Figure 3(a), left column), the decrease in degree of anonymity
when using the community-aware algorithm is about twice as much
as that when using community-blind algorithm. Specifically, for
10% noise and 16 seeds, A(G) is 0.45 and 0.83 (or anonymity is
6.81 and 12.57 bits) when using community-aware and community-
blind algorithms, respectively. Note that for a collaboration net-
work with 36,458 nodes, the maximum anonymity is equal to 15.15

3The percentage of unmapped nodes is simply the difference be-
tween 100% and the sum of the success and error rates.
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Figure 3: Performance of community-aware and community-
blind algorithms on Collaboration, and Twitter mention net-
works.

bits. As noise increases, both algorithms are less successful in re-
identifying users. However, the community-aware algorithm toler-
ates more noise than the community-blind algorithm. For exam-
ple, in the collaboration network, with 20% noise, the community-
aware algorithm is able to correctly map about 15% of users while
community-blind algorithm can barely re-identify any user. The
degree of anonymity is 0.84 and 1 (or anonymity is 12.72 and
15.15 bits) when using community-aware and community-blind al-
gorithms, respectively. For 30% and 40% of noise, both algorithms
perform poorly and the degree of anonymity is 1.

The same observations can be seen in the Twitter network with
90,332 nodes. In this network, the decrease is not uniform over
different levels of noise (Figure 3(a), right column). Both algo-
rithms are highly successful in re-identification of users when the
noise is less than 5%. However, the difference between the perfor-
mance of two algorithms greatly increases when the noise is above
15% and 20%. Specifically, for 15% of noise and 16 seeds, A(G)
is 0.2 and 0.84 (or the anonymity is 3.29 and 13.82 bits) when
using community-aware and community-blind algorithms, respec-
tively. In other words, the community-aware algorithm reduces the



anonymity by 10 additional bits compared to the community-blind
algorithm. In this case the success rate of the community-aware al-
gorithm (∼65%) is almost twice as much as that of the community-
blind algorithm (∼ 33%). Note that the maximum anonymity for
this network is 16.46.

The results on the Twitter network with 90,332 nodes also shows
community-aware algorithm is more robust to the noise where even
with 20% of noise, it is able to correctly map about 40% of users
while the community-blind algorithm can barely re-identify any
user. It also reduces the degree of anonymity about 60% (from 1
to 0.41). In other words, the anonymity is reduced by about 10 bits
from 16.46 to 6.75. For 30% and 40% of noise, the community-
aware algorithm also re-identifies about 3.5% and 0.04% of the
users and reduces the degree of anonymity to 0.86 and 0.92, re-
spectively.

7.1.2 Impact of number of seeds
Figure 3(b) shows the impact of the number of seeds on A(G),

Ps, and Pe. The noise level is set to 10%, while the number
of seeds changes from 4 to 128. Both algorithms are more suc-
cessful when more seeds are provided to them. However, our
community-aware approach is more robust to a smaller number
of initial seeds. You can see that in all networks, over differ-
ent numbers of initial seeds, the community-aware algorithm al-
ways reduces the anonymity (and re-identifies users) more than the
community-blind algorithm. For example, in the collaboration net-
work (Figure 3(b), left column), when the number of seeds is 32,
A(G) is 0.38 and 0.74 (or the anonymity is 5.76 and 11.21 bits)
when using community-aware and community-blind algorithms,
respectively.

In the Twitter network with 90,332 nodes (Figure 3(b), right
column), a smaller number of seeds significantly affects the
performance of the community-blind algorithm. However, the
number of seeds only slightly affects the performance of the
community-aware algorithm. For example, when the number of
seeds is only four, the community-aware algorithm successfully
re-identifies 77% of users while the community-blind algorithm
only re-identifies about 7% of the users. Similarly, the degree
of anonymity is about 0.13 and 0.97 (and anonymity is 2.14 and
15.97) when using community-aware and community-blind algo-
rithms, respectively. In other words, the community-aware algo-
rithm decreases the anonymity by 13.83 additional bits compared
to the community-blind algorithm.

7.1.3 Impact of network size
Comparing the results for the Twitter network with 90,332 nodes

and the Twitter network with 9,745 nodes (Figure 3(b), right and
middle columns, respectively) illustrates the impact of size on the
performance of both algorithms. Having a smaller network, both
algorithms perform better in re-identifying users and tolerating
noise. For example, both algorithms are successful at re-identifying
users even with 40% noise. However, the performance difference
between the community-aware and community-blind algorithms is
more obvious when the network is bigger. For example, with 20%
noise, A(G) in the larger Twitter network is 0.41 and 1 when using
the community-aware and community-blind algorithms. Thus, the
difference is about 0.60. However, having 20% noise, A(G) in the
smaller Twitter network is 0.17 and 0.32 when using community-
aware and community-blind algorithms, respectively, and the dif-
ference is only about 0.15. Thus, our community-aware approach
is more robust to the size of network.

The error rates of both algorithms show similar trends. Our ap-
proach exhibits slightly higher error rate in some cases but most of
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Figure 4: Performance on overlapped data sets

them occur when the community-blind approach completely fails,
and ours correctly identifies many more users.

In summary, if one aims to map two networks that are not iden-
tical to each other, using our community-based mapping algorithm
is almost always guaranteed to reduce the anonymity more and find
more successful mappings than the community-blind, global map-
ping algorithm. In addition, we expect a larger boost as the prior
information (seeds) decreases.

7.2 Results for overlapping data sets
Figure 4 demonstrates that the community-aware algorithm also

outperforms the community-blind algorithm when the original and
the noisy networks do not have the exact same user base. We add
noise in two steps: first, we rewire edges as usual to create G′.
Then, we remove the same number of randomly selected nodes
from both G and G′. For instance, 20% of noise in Figure 4 means
that we first rewire 10% of G’s edges to generate G′ and then
remove 10% of nodes (and connected edges) independently from
both G and G′, making V 6= V ′. Since V 6= V ′, the success rate
is normalized by |V ∩ V ′|.

We used the formula for the degree of anonymity laid out in Sec-
tion 5 without any modification for the sake of simplicity. Although
one can make the formula more precise by considering cases for the
nodes that belong to only V or V ′, we adopt a simpler approach as
our main objective is comparing our method with an existing one.

Figure 4 (left column) shows that the community-aware algo-
rithm reduces the degree of anonymity while the community-blind
algorithm fails regardless of the number of seeds. With 20% noise,
the community-aware algorithm reduces the degree of anonymity
from 0.87 to 0.55 (and anonymity is reduced by 2 and 6.7 bits)
with 4 and 128 seeds respectively.

Looking at the right column of Figure 4 (16 seeds with varying
noise), we see that the community-blind algorithm fails completely
when the noise level is more than 10%, whereas the community-
aware algorithm fails when the noise level is more than 30%. The



community-aware algorithm re-identifies 20% more users than the
community-blind algorithm when the noise is 10% and it identifies
about twice as much when the noise is 20% and 30%. Specifically,
when the noise is 10%, and the number of seeds is 16, the success
rate is about 49% and 29% for community-aware and community-
blind algorithms, respectively. In addition, the community-aware
approach reduces the degree of anonymity almost twice as much as
the community-blind algorithm from 0.98 to 0.47. In other words,
the anonymity is reduced by more than 7 bits from 14.77 to 7.08
bits. Note that the maximum entropy for this network is 15.08.

7.3 Time complexity
The community detection step is not a bottleneck as Infomap’s

time complexity is estimated to be O(m). For instance, the Louvain
method, another popular community detection method has been ap-
plied to large graphs with more than 20M nodes and 100M edges.
As community mapping and local propagation use the same de-
anonymization algorithm (on a much smaller graph), the time com-
plexity of these steps is smaller than the final global propagation
step. Therefore, the time-limiting step in the whole process is the
final, global propagation step, which is determined by the algo-
rithm being boosted. If the original algorithm can be applied to a
given graph, our approach can also be applied to the graph without
increasing the overall time complexity.

8. RELATED-WORK
In this section we discuss relevant research about graph

anonymization techniques, de-anonymization attacks based on
structure alone, and those based on attributes as well. Finally, we
discuss applications of network alignment to other fields.

8.1 Graph anonymization
Anonymization techniques can be classified into following four

approaches [48]: 1) clustering, 2) clustering with constraints,
3) modification of graph, and 4) hybrid. The ‘clustering-based
method’ applies generalization techniques [9, 60] to aggregate
edges or node information so that there are many possible mappings
from the clustering back to the graphs, which will always include
the original [11]. ‘Clustering with constraints’ [56] merges all
nodes of each cluster to a single node and then decides which edges
to include in the anonymized graph so that equivalence class nodes
to have some constraints as any two nodes in the original data. The
‘modification of graph’ approach [54, 55] aims to defeat attacks
that exploit known structures in the graph, by adding, removing,
and/or swapping some nodes and edges in a social network. In
this paper, we focused on this approach and show that applying
our community-enhanced de-anonymization approach, sometimes
the attacker can de-anonymize the anonymized graph, even when
20% of edges of a graph are randomly added/deleted. The ‘hybrid
approach’ includes combinations of any of the above [51, 58, 60].

A recent approach by Mittal et al. [34] perturbs the structure of
the graph to provide link privacy, where relationships are sensi-
tive while node identities may be known. Their approach preserves
community structure to maintain the utility of certain applications
(e.g., anonymous routing leveraging trusted links) while hiding in-
dividual relationships. While their approach is not focused on ver-
tex privacy, we caution the application of their technique to graph
de-anonymization as it explicitly retains community structure.

8.2 De-anonymization attacks based on struc-
ture

Structural de-anonymization attacks leverage patterns of connec-
tivity in the social network. They can be classified into either ‘ac-

tive’ or ‘passive.’ In active attacks, such as the method suggested
by Backstrom et al. [5], the adversary chooses its victims to de-
anonymize prior to the release of the network. Then, they create a
small number of new user accounts(‘Sybils’) and try to form con-
nections to the victims. Because the attacker can impose a unique
structure on the subgraph of Sybil nodes, they can be identified
from the whole anonymized graph. It has been shown that it is
possible to re-identify both Sybil accounts and the victims when
the anonymized network is released. However, as Narayanan and
Shmatikov [37] point out, active attacks are not scalable because
creating thousands of fake user accounts is expensive and this at-
tack may not be as effective in directed graphs when legitimate
users do not link back to the sybil nodes.

On the other hand, passive attacks do not actively modify the
network. Backstrom et al. [5] have also suggested a passive at-
tack where a small coalition of attackers identifies its location in
the released network, and tries to discover the existence of edges
among users to whom they are linked. This attack is less effec-
tive than the active one and works only at a small-scale because the
attackers do not choose any user as a victim and they can compro-
mise the privacy of nodes only in their proximities in the network.
Narayanan and Shmatikov [37] proposed a large-scale, passive de-
anonymization attack technique. This attack, as explained in Sec-
tion 3, exploits the network structure more extensively than previ-
ous attacks. They show that about 30% of the verifiable members of
Twitter and Flickr could be recognized with 12% error rate. Their
work demonstrated the feasibility of successful re-identification
solely based on the network topology. Our results show that our
community-based approach can boost the performance of their, and
in principle any, algorithm under higher levels of noise, larger num-
ber of nodes, or fewer known seeds.

8.3 De-anonymization attacks based on other
attributes

Attacks that leverage additional information beyond the structure
of the networks also have been proposed. For example, it has been
shown that one can reveal private information of users by using
their public and non-sensitive data [3, 6, 19, 21, 57]. Wondracek et
al. [53] introduced a technique that narrow down user identity by
examining social-network group membership stolen from brows-
ing history. Users who are members of multiple social networks
may have a public appearance in one website and be more cautious
about their information in another one. Identifying users from dif-
ferent websites and aggregating their information may reveal sensi-
tive information. However, matching users even across two public
networks is not a trivial problem. Some of the existing approaches
exploit users’ activity patterns (Korayem and Crandall [29]), tag-
ging behavior (Lofciu et al. [23]), item preferences (Narayanan and
Shmatikov [36]), and communication patterns (Diaz et al. [13]).

8.4 Network alignment
Network alignment has been of interest in other fields includ-

ing Biology [30, 49]. In biological contexts, this technique is used
to map two protein interaction networks to infer the function of
unknown proteins in each species. The problem is formulated
as a quadratic program and solving it is NP-hard. Different ap-
proaches [7, 26, 28] have been proposed to relax the constraints or
find proper heuristic functions. These approaches have been ap-
plied successfully in some applications such as finding common
path-ways in biological networks [49, 50] and ontology alignment
between Citeseer papers and DBLP papers [22]. However, these
networks are of smaller scale compared to social networks and
more investigation is needed for large-scale social networks.



9. CONCLUSION
We show how ‘mesoscopic’ properties of a social network

can be leveraged to improve the degree of de-anonymization of
anonymized social network datasets. In particular, decomposing
the network into ‘communities’ allows for de-anonymization at a
coarser granularity first, and then at the node level. This approach
is more robust against added noise to the anonymized data set, and
can perform well with fewer known seeds as well as larger net-
works.

Our work demonstrates the utility of community detection to de-
anonymization, thus exposing the importance of structural prop-
erties of networks. We would like to highlight that our approach
is, in principle, not tied to any specific algorithm; we anticipate
other community detection methods and community-blind network
alignment algorithms could be ‘plugged in’ to our framework.
Future work could explore ways to apply community detection
to other attributes (such as location, language, time, and mes-
sages/posts) as well. These attributes can be studied at the com-
munity level before drilling down into individual communities, po-
tentially providing even more powerful de-anonymization.
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