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We investigate critical behaviors of a social contagion model on weighted networks. An edge-weight
compartmental approach is applied to analyze the weighted social contagion on strongly heterogenous networks
with skewed degree and weight distributions. We find that degree heterogeneity cannot only alter the nature
of contagion transition from discontinuous to continuous but also can enhance or hamper the size of adoption,
depending on the unit transmission probability. We also show that the heterogeneity of weight distribution always
hinders social contagions, and does not alter the transition type.
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I. INTRODUCTION

Network provides a useful analytical framework for study-
ing a wide array of social phenomena, since the network of
people—social networks—plays a critical role in many social
phenomena [1–6]. Although the edges in social networks—
social relationships—are often modeled as binary, it is more
realistic to consider weighted edges because the strength of
social relationships greatly varies in reality [7]. A number
of proxies has been used to capture the strength of social
relationships. For example, the number of papers that two
scientists have coauthored was used to capture the strength
of the collaboration [7,8]; the duration of calls—the amount
of conversation—between two people is used to measure
how close they are [9]. Thus it is important to ask how the
distribution of weights, along with degree distribution, affects
various dynamics on networks.

Spreading processes, such as epidemic spreading [2,10–
12], diffusion of innovations [13–15], and diffusion of rumors
[16–18], are fundamental dynamics on social networks. Recent
studies have shown that there exist two important classes
of contagions: simple and complex. Simple contagions (e.g.,
epidemic models such as the SIS model [19] and SIR model
[20]) refer the processes where contagions spread inde-
pendently, while complex contagions (e.g., linear threshold
model [21,22]) refer the processes that are affected by social
reinforcement, where more exposures can drastically increase
the adoption probability [15,22–25].

Previous studies, focused mainly on simple contagions,
have revealed that strong heterogeneity in the degree and
weight distributions not only is ubiquitous [2,7,26], but also
fundamentally affects the nature of spreading phenomena
[1,19,27–29]. For instance, small-world random networks with
a degree distribution decaying slower than an exponential
have a vanishing epidemic threshold in the thermodynamic
limit [30]. The inhomogeneity of weight distribution can
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also significantly affect the epidemic threshold, epidemic
prevalence, and spreading velocity [27,31–34]. Although
many interesting properties of complex contagions have been
uncovered recently [23,35–37], it is not fully understood
how degree and weight heterogeneity affect the dynamics of
complex contagions. Building on recent progress in complex
contagions [15,22,38,39], here we introduce a weighted com-
plex contagion model and investigate the effect of degree and
weight heterogeneity on the dynamics of complex contagion.

We find that (i) increasing heterogeneity of degree dis-
tribution changes the nature of the phase transition from
discontinuous to continuous; (ii) degree heterogeneity plays
two opposite roles depending on the unit transmission proba-
bility: it enhances the spreading when the unit transmission
probability is small while hinders the spreading when the
unit transmission probability is large; and (iii) the weight
heterogeneity suppresses the contagion while not altering
the transition type. To analyze the dynamics of complex
contagions on weighted networks, we use an edge-weight
compartmental approach, which provides accurate results.

II. WEIGHTED COMPLEX CONTAGION
MODEL AND NETWORK

We first introduce a complex contagion model that takes
weighted edges into account. Our model builds on a simple,
generalized non-Markovian contagion model that can describe
both simple and complex contagions [15,40,41]. In particular,
an individual can be in one of three possible states: susceptible
(S), adopted (A), or recovered (R). Each individual has a
state of integer awareness value m ∈ [0,T ] which denotes
the exact received pieces of cumulative information. An
individual adopts and begins to transmit the behavior or
information (contagion) when its awareness value reaches T .
Individuals with m < T do not affect the others. Here we add
a weight-based transmission rule—individuals transmit the
contagion preferably to its closer neighbors with the following
probability:

λwi,j
= 1 − (1 − β)wi,j , (1)
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where wi,j is positive real integer, which denotes the weight
of the connection between individual i and j , and β is the
unit transmission probability. Given β, λwi,j

monotonically
increases with wi,j , i.e., individuals are more likely to transmit
the contagion to more strongly connected neighbors. Also note
that the probabilities are indeed rates and defined per time.
When successful, the awareness value of the neighbor will
increase by one. Edges that have transmitted the contagion
successfully will never transmit the same information again.
Also, each adopted individual may become recovered with
probability γ , considering the fact that people may lose interest
in the contagion after a while and will not spread it any
more (in this paper, we set γ = 1 unless noted, so everyone
is active for only one step). The individuals will remain in
recovered state for all subsequent times once recovered. Note
that, each individual can remember the cumulative pieces
of non-redundant that received from his/her neighbors in
our model, which makes the contagion processes become
non-Markovian. This is different with SIR and SEIS models
[20,42], in which whether the susceptible individual gets
adopted only depends on the neighbors current states. Also
note that we applied the synchronous updating method to
renew the states of individuals. In this case, the time evolves
discretely.

In our networks, we initially select a small fraction of
nodes randomly and designate them as seeds by setting their
awareness to be T . We set the awareness of the remaining
nodes to be 0 and let them be at the susceptible state. In
each step, all adopted nodes will interact with all of their
susceptible neighbors and transmit the contagion to them with
the probability defined above. At the same time, all adopted
nodes will recover with probability 1. The spreading process
stops when there are no adopted nodes, the final adoption size
is equal to the final density of recovered nodes.

For simplicity, we assume uncorrelated random graphs
specified by two distributions: degree and weight. We real-
ize such networks by generalizing the configuration model
[27,43]. Consider one network with N nodes and M edges.
We first create a graph using the classical configuration
model, where the degree distribution follows p(k) ∼ k−αk

(3 � ki �
√

N ), then distribute weights that are sampled from
g(w) ∼ w−αw randomly (wmax ∼ N

1
αw−1 ). αk (αw) controls

the heterogeneity of the degree (weight) distribution [2],
heterogenous distribution is commonly used to describe highly
skewed distribution. Following previous studies [27,34], we
assume integer weight values as it makes our approach more
tractable.

III. THEORETICAL APPROACH
AND NUMERICAL SIMULATION

A. Edge-weight compartmental approach

One of the most widely used approaches to study net-
work dynamics—heterogeneous mean-field theory (HMF)
[20,44]—separates nodes into each degree bucket while
treating all edges equally. While it provides an excellent way to
handle strong degree heterogeneity, it overlooks edge weight
heterogeneity. As a result, the approach exhibits a limitation in
dealing with networks with strong weight heterogeneity [45].

Our edge-weight compartmental approach treats each (integer)
weight values separately and provides a better way to study
networks with strong weight heterogeneity [27,46–48].

We use variables S(t), A(t), and R(t) to denote densities
of the susceptible, adopted, and recovered nodes at time t .
Let us consider a randomly selected susceptible node u with
awareness value m. Node u will remain susceptible as long
as m < T and will become adopted once T of its neighbors
have transmitted the contagion successfully to u since multiple
transmission through an edge is forbidden. As edge weights
are assigned randomly, the probability that u is not informed
by a neighbor v by time t can be denoted by

θ (t) =
∑
w

g(w)θw(t), (2)

where θw(t) denotes the probability that u is not informed by an
edge with weight w by time t . If u’s degree is k, the probability
that the node was not one of the seeds and has been exposed
to the contagion for m times by time t is

φm(k,t) = (1 − ρ0)

(
k

m

)
[θ (t)]k−m[1 − θ (t)]m, (3)

where A0 denotes the fraction of seeds. Clearly, the probability
that the k-degree node was not one of the seeds and still did
not adopt the contagion by time t is

φ(k,t) =
T −1∑
m=0

φm(k,t). (4)

Thus the fraction of susceptible nodes (the probability that a
randomly selected node is susceptible) at time t is

S(t) =
∑
k=0

p(k)φ(k,t). (5)

Now, let us examine θw(t) in Eq. (2), θw(t) can be broken
down into

θw(t) = ξS
w(t) + ξA

w (t) + ξR
w (t), (6)

where ξX
w (t) denote the probability that a neighbor in the state

X ∈ {S,A,R} has not transmitted the contagion to u through an
edge with weight w by time t . Once we derive ξX

w (t)s, we can
get the density of susceptible nodes at time t by substituting
them into Eqs. (2)–(5).

Only neighbors that are in an adopted state can inform u. So
first let us calculate the probability that the neighbor remains
to be susceptible by t . As we assume no correlation between
the degrees of nodes and its neighbors exist in uncorrelated
networks, the probability that a random neighbor of u has
degree k is kp(k)/〈k〉, where 〈k〉 is the mean degree of the
network. With mean-field approximation, ξS

w(t) is simply the
probability that one of its neighbors remains in the susceptible
state by time t , which is given by

ξS
w(t) =

∑
k kp(k)φ(k − 1,t)

〈k〉 . (7)

Note that, as we already know, u is in a susceptible state at this
time, so the probability that this k-degree neighbor still did not
adopt the behavior by time t is φ(k − 1,t).

Calculating ξR
w (t) requires considering two consecutive

events: first, an adopted neighbor has not transmitted the
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contagion to node u via their edge with weight w with
probability 1 − λw; second, the adopted neighbor has been
recovered, with probability γ . Combining these two events,
we have

dξR
w (t)

dt
= γ [1 − λw]ξA

w (t). (8)

If this adopted neighbor transmits the contagion via an edge
with weight w, the rate of flow from θw(t) to 1 − θw(t) will be
λ(w)ξA

w (t), which means

dθw(t)

dt
= −λwξA

w (t) (9)

and

d(1 − θw(t))

dt
= λwξA

w (t). (10)

By combining Eqs. (8) and (10), one obtains

ξR
w = γ [1 − θw(t)][1 − λw]

λw

. (11)

Substituting Eqs. (7) and (11) into Eq. (6), we yield the
following relation:

ξA
w (t) = θw(t) −

∑
k kp(k)φ(k − 1,t)

〈k〉
− γ [1 − θw(t)][1 − λw]

λw

. (12)

By plugging this into Eq. (9), we obtain

dθw(t)

dt
= λw

∑
k kp(k)φ(k − 1,t)

〈k〉 − (1 − γ )λwθw(t)

+ γ [1 − λw − θw(t)]. (13)

From Eq. (13), the probability θw(t) can be computed. The
density associated with each distinct state is given by

dR(t)

dt
= γA(t),

S(t) =
∑
k=0

p(k)φ(k,t),

A(t) = 1 − R(t) − S(t). (14)

From Eqs. (13) and (14), one can find that around O(wmax)
equations are required in our edge-weight compartmental
approach. By setting t → ∞ and dθw(t)/dt = 0 in Eq. (13),
we get the probability of one edge with weight w that did not
propagate the contagion in the whole contagion process:

θw(∞) =
γ [1 − λw] + λw

∑
k kp(k)φ(k−1,∞)

〈k〉
(1 − γ )λw + γ

. (15)

θw(t) decreases with t and thus if more than one stable fixed
point exists in Eq. (15), only the maximum one is physically
meaningful [40,48]. Substituting θw(∞) into Eqs. (2)–(5), we
can calculate the value of S(∞), and then final adoption size
R(∞) can be obtained. The number of roots in Eq. (15) is either
one or three. If Eq. (15) has only one root, R(∞) increases
continuously with β, if Eq. (15) has three roots, a saddle-node
bifurcation will occur, which leads to a discontinuous change

in R(∞) [49]. The nontrivial solution corresponds to the point
at which the equation

f (θ (∞)) =
∑
w

g(w)
γ [1 − λw] + λw

∑
k kp(k)φ(k−1,∞)

〈k〉
(1 − γ )λw + γ

− θ (∞)

(16)

is tangent to horizontal axis at the critical value of θc(∞), in
which θc(∞) means the critical probability that the information
is not transmitted to u via an edge at the critical transmission
probability when t → ∞. We obtain the critical condition of
contagion by

df (θ (∞))

dθ (∞)
|θc(∞) = 0. (17)

Plugging θc(∞) into Eq. (2) provides us with the critical
probability βc.

B. Simulation results

We report results of analytical solutions along with numeri-
cal simulations. We consider networks with power-law degree
and weight distributions: p(k) ∼ k−αk and g(w) ∼ w−αw . We
use A0 = 0.1 across the article but the results are robust with a
range of A0. Also we use, for each parameter combination, 50
network realizations, on each of which we run 100 independent
simulations.

Figure 1 illustrates the time evolutions of susceptible
(S), adopted (A), and recovered (R) nodes. Naturally, it
displays a very similar dynamics as with the SIR model. Our
analytical results (lines) agree well with simulation results
(symbols). In Fig. 2(a), we show the final adoption size
[R(∞)] in relationship with unit transmission probability (β)
for networks with different degree and weight distributions
along with the analytical results (shown in black line, which
match well with the simulation results). Now, let us focus on
the influence of heterogeneous degree distribution on social
contagion processes from two perspectives: the transition type

0 5 10 15 20
t
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0.6

0.8

1

D
en
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ty

S(t)
A(t)
R(t)

FIG. 1. Time evolutions of densities of nodes in different states,
denoted by S(t) (blue triangles), A(t) (red squares), and R(t) (black
circles), respectively. Analytical results are plotted in lines, which
match well with simulation results (symbols). The parameters for the
simulations are N = 10,000, 〈k〉 = 10, 〈w〉 = 8, αk = 2.1, αw = 2.4,
β = 0.18, A0 = 0.1, and T = 3.
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FIG. 2. Final states of complex contagion dynamics on weighted
networks. (a) Final adoption size [R(∞)] versus the unit transmission
probability (β) on different networks with tunable parameters. The
inset shows the numerical solutions of mean transmission rate 〈λw〉 as
function of β for three different values of αw (i.e., 2.1, 2.5, and 4.0).
(b) Susceptibility versus the β on different networks with tunable
parameters. The parameters for all the simulations are N = 10,000,
〈k〉 = 10, 〈w〉 = 8, A0 = 0.1, and T = 3.

of R(∞) with β and the final adoption size. We summarize
our results as follows.

First, the degree exponent determines the discontinuity of
the transition as shown in a previous work [48]. Figure 2(a)
shows that R(∞) increases continuously with β with hetero-
geneous degree distribution (e.g., αk = 2.1), while exhibiting
a discontinuous transition when αk = 4.0. The results of
bifurcation analysis on Eq. (15) show that there exists one
critical degree exponent αc

k ≈ 4.0, below (above) which R(∞)
versus β is continuous (discontinuous). For networks with
αk = 4.0, the value of βc can be obtained from Eq. (15) using
bifurcation theory [49]. Analytical calculations show that for
Eq. (15), the number of roots in Eq. (15) is either one or three
(see Fig. 3). If Eq. (15) has only one root, R(∞) increases
continuously with β; if Eq. (15) has three roots, a saddle-node
bifurcation occurs [49]. As shown in Fig. 3, there is only one
fixed point of Eq. (15) at a small value of β (e.g., β = 0.1984)
and then three fixed points [in this case, only the maximum one
is physically meaningful since θ (t) decreases with t] gradually
emerge with the increasing of β. The tangent point that is
marked as one red circle is the physically meaningful solution
at the unit transmission probability βc (e.g., β = 0.2006). For
β > βc (e.g., β = 0.2039), the solution of Eq. (15) changes
to a smaller solution abruptly, which leads to a discontinuous
change in R(∞). We can demonstrate the type of dependence

FIG. 3. Illustration of graphical solutions of Eq. (15). The black
solid line is the horizontal axis and the red circle denotes the tangent
point. The parameters for the simulations are N = 10,000, 〈k〉 = 10,
〈w〉 = 8, αk = 4.0, αw = 2.1, A0 = 0.1, and T = 3.

and obtain the value of βc for other parameters through the
similar measure.

We also explain this phenomena visually by showing
susceptibility in Fig. 2(b), susceptibility [50] is defined as

χ = N
〈R(∞)2〉 − 〈R(∞)〉2

〈R(∞)〉 . (18)

Clearly, for results in Fig. 2(b), each phase transition corre-
sponds to one peak of susceptibility. The critical value βc can
also be estimated by increasing the number of iterations [51]
(only those interactions in which at least one newly adopted
individual appears are taken into account). In Fig. 2(b), we
show the estimated βc with dashed lines, which correspond to
the peaks of susceptibility. More details are shown in Fig. 4. As
we expected, R(∞) for networks with heterogeneous degree
distribution [Fig. 4(a)] shows a continuous change with the
increasing of β while change discontinuously on networks
with homogeneous degree distribution [Fig. 4(c)]. Analytical
results shown in Fig. 4(b),(d) agree well with numerical results.
The estimated values of βc are labeled with a blue circle, along
with the corresponding analytical critical results plotted with
a blue line [shown in Figs. 4(d)].

Second, as a result of continuous-discontinuous transition,
degree heterogeneity enhances the final adoption size at small
β while hindering it at large β, which is consistent with
that of the epidemic case [27]. For instance, when αw = 2.1,
the final adoption size [R(∞)] for αk = 2.1 is greater than
that of αk = 4.0 when β < 0.2, while the opposite situation
is obtained when β > 0.2 [shown in Fig. 2(a)]. This result
can be qualitatively explained as follows: social contagion
propagates on complex networks in two stages due to the
co-emergence of more hubs and a large amount of small-degree
nodes with increasing heterogeneity of degree distribution.
The hubs are more likely to become adopted early since
more neighbors make them have a higher chance to reach the
identical awareness threshold T and thus get adopted. On the
contrary, small-degree nodes are less likely to become adopted
due to the small number of neighbors. Given a network with
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FIG. 4. The relationships between αw , β, and R(∞) at a fixed αk .
(a) and (b) are results of numerical simulation and analytical method
on networks with αk = 2.1, while (c) and (d) are those of αk = 4.0
respectively. The parameters for simulation are N = 10,000, 〈k〉 =
10, 〈w〉 = 8, A0 = 0.1, and T = 3.

heterogeneous degree distribution, when unit transmission
probability β is small, the existence of more hubs enhances
the contagion and thus leads to greater R(∞) (promotion
region); When β is large, the existence of a large amount
of small-degree nodes will hinder the contagion, resulting in
smaller R(∞) (suppression region). Figure 5 shows the whole
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FIG. 5. The relationships between αk , β, and R(∞) at a fixed αw .
(a) and (b) are results of numerical simulation and analytical method
on networks with αw = 2.1, while (c) and (d) are those of αw = 4.0
respectively. The parameters for the simulations are N = 10,000,
〈k〉 = 10, 〈w〉 = 8, A0 = 0.1, and T = 3.
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FIG. 6. The relationships between αk , αw , and R(∞) when the
unit transmission probability β is fixed. (a) and (b) are results
of numerical simulation and analytical method on the weighted
contagion model with β = 0.05, while (c) and (d) are those of β = 0.1
respectively. The parameters for the simulations are N = 10,000,
〈k〉 = 10, 〈w〉 = 8, A0 = 0.1, and T = 3.

picture of the relationship between αk , β, and R(∞) when
fixing αw. Increasing the heterogeneity of degree distribution
will enhance R(∞) at small β while hindering the adoption
size at large β.

Let us address the influence of the heterogeneity of weight
distribution on social contagion processes at a given αk .
The heterogeneity of weight distribution (smaller value of
αw) reduces final adoption size R(∞). For instance, if we
fix αk [Fig. 2(a)], R(∞) for αw = 2.1 is always smaller
than that of αw = 4.0. This phenomenon can be explained
as follows: when the average weight 〈w〉 is fixed, in the
network with smaller αw, most edges have lower weights
and thus transmission probabilities, leading to a smaller mean
transmission rate 〈λw〉 = ∑

w g(w)λw for a randomly selected
edge. As shown in the inset of Fig. 2(a), 〈λw〉 of αw = 2.1
is smaller than that of αw = 4.0 with a given β. On the
other hand, changing the weight distribution will not change
the dependence behavior of [R(∞), β] with a given degree
distribution, which is similar to the case of simple contagion
models [27]. This finding can be verified from analytical
perspective, varying the value of αw will not change the number
of roots in Eq. (15), thus will not affect whether saddle-node
bifurcation occurs or not. The relationship between αw and β

when fixing αk is shown in Fig. 4, which confirms our finding
here.

Finally, Fig. 6 summarizes our results, showing that for
a small value of transmission probability (β = 0.05), the
existence of more hubs that can be easily informed thus
enhances the contagion process (promotion region). While
for a large value of transmission probability (β = 0.1), the
existence of large-amount small-degree nodes that are difficult
to be adopted will hinder the contagion process (suppression
region). In addition, increasing the heterogeneity of weight
distribution will always hinder R(∞). Figures 6(a),(c) and
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6(b),(d) show the results of simulation and analytical methods,
respectively, which match well with each other.

IV. CONCLUSIONS

In summary, we study the effect of heterogenous network
structures on the diffusion of complex contagions. With de-
creasing heterogeneity of degree distribution, the dependence
of the final adoption size on unit transmission probability
changes from being continuous to discontinuous. We then
show that the heterogeneity of degree distribution may have
two opposite effects depending on the transmission probabil-
ity: degree heterogeneity enhances complex contagions when
β is small while hindering it when β is large. By contrast, the
heterogeneity of weight distribution always reduces the final
adoption size though does not change the dependence pattern
of final adoption size on the unit transmission probability.
In order to describe the non-Markovian characteristic and
weight-based transmission rule by the edge-weight based
compartmental theory, we made efforts from two aspects.
On the one hand, in order to consider the non-Markovian

characteristic, we first developed content of θw(t) to denote
the probability that the individual u in the cavity state is
not informed by an edge with weight w by time t , then
introduced the memory into Eqs. (3) and (7). On the other
hand, we let the αk and αw be heterogeneous to study the effects
of heterogeneous structures. The edge-weight compartmental
approach can predict the proposed model well.

Our findings offer insights to understand the influence of
underlying network structures for weighed social contagions.
Future work may investigate the nature of bifurcation, the
cases where the adoption threshold of each individual varies
with its degree, or a richer and correlated network structure is
assumed.
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