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Discovering overlapping community structures is a crucial step to understanding the structure and dynamics of
many networks. In this paper we develop a symmetric binary matrix factorization model to identify overlapping
communities. Our model allows us not only to assign community memberships explicitly to nodes, but also to
distinguish outliers from overlapping nodes. In addition, we propose a modified partition density to evaluate the
quality of community structures. We use this to determine the most appropriate number of communities. We
evaluate our methods using both synthetic benchmarks and real-world networks, demonstrating the effectiveness
of our approach.
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I. INTRODUCTION

Many complex networks possess community structure [1].
Intuitively speaking, a community is a set of nodes that are
densely interconnected but loosely connected with the rest of
the network. Nodes often belong to more than one community,
causing communities to overlap with each other [2,3]. For
example, a person in a social network belongs to many groups,
such as a family, a company, and a baseball club; many
proteins have more than one function and belong to multiple
functional communities [2]. The overlap cannot be detected
by the traditional hard-partitioning methods that assign each
node to a single community [4].

Because of its abundance, overlapping community structure
has become a popular research topic and many detection
methods have been introduced. They can be classified into
two categories based on their outputs [5]: fuzzy overlapping
community detection and nonfuzzy overlapping community
detection. Fuzzy overlapping community detection methods
estimate the strength of memberships, while not being able to
provide clear node membership to each community [6–8]. By
contrast, nonfuzzy overlapping community detection methods
give crisp partitions, allowing each node to have multiple
community labels [3,9]. These methods do not provide any
information about the strength of the nodes’ membership in
each community. In short, each approach has complementary
benefits and drawbacks, raising the following question: Can
we combine the advantages of both kinds of approaches?

In this paper we propose a symmetric binary matrix
factorization (SBMF) model to combine the best of both.
It is motivated by both symmetric non-negative matrix fac-
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torization (SNMF) [10,11] and binary matrix factorization
(BMF) [12,13]. The SBMF enables us not only to identify
the community structures explicitly, but also to analyze the
strength of membership based on the corresponding results
from SNMF, providing a comprehensive picture exploiting
both SNMF and SBMF. Furthermore, the model can distin-
guish the outliers, which do not belong to any communities,
from the overlapping ones.

An essential step in community detection is defining
the quality of the detected community structure. One of
the most widely used quantities is the modularity function
Q [14,15]. However, the modularity function has several
drawbacks. The most well-known problem is the resolution
limit such that Q cannot capture small communities however
strongly clustered they are [16]. Several other issues of Q

have been identified including bottleneck dependence [17],
misidentification of communities [18], and a degeneracy
problem [19]. Recently, partition density, a new measure
designed for evaluating highly overlapping communities, was
proposed [3]. In this paper we use a modified partition
density to assess node-based communities instead of link
communities.

In summary, the contributions of this paper are
(i) proposing a parameter-free, simple-to-implement over-
lapping community detection method, SBMF; (ii) providing
a method to infer an appropriate number of communities
using a modified partition density; and (iii) demonstrating the
effectiveness of the proposed method by systematically con-
ducting experiments on both the synthetic and the real-world
networks.

The rest of the paper is organized as follows. Section II
introduces the symmetric binary matrix factorization. Sec-
tion III presents the partition density. Section IV explains an
illustrative example. Section V shows the experimental results.
Finally, Sec. VI summarizes.
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II. SYMMETRIC BINARY MATRIX FACTORIZATION

A. Motivation

Let us begin from a matrix factorization approach for
community detection [6]:

min ‖X − UUT ‖2
F subject to U � 0,

(1)
c∑

j=1

Uij = 1, i = 1,2, . . . ,n,

where X is the adjacency matrix of the network of size n × n

and U is the community membership matrix of size n × c.
Note that in this paper we set the diagonal elements of X equal
to 1 in accordance with the assumption that the connected pairs
of nodes are more similar to each other.

The standard non-negative matrix factorization (NMF) tries
to factorize a non-negative matrix X of size n × m into two
nonnegative matrices, U1 of size n × c and U2 of size m × c,
such that X ≈ U1U

T
2 [10,11]. For the symmetric objective

matrix X, NMF can be reduced to SNMF [see Eq. (1)].
The NMF is becoming one of the most popular and

widely accepted models in unsupervised learning [10,20,21].
Several NMF-based models have been applied to community
detection. Due to the flexibility of the model, NMF is particu-
larly suitable for the detection of overlapping communities
[7,22–25]. The result U can be interpreted as a cluster
membership degree matrix, i.e., node i belongs to a community
t with the strength Uit (note that

∑
j Uij = 1), providing fuzzy

overlapping communities. However, how does one determine
whether a node really belongs to a community or not? Does
the strength 0.9 mean that the node belongs to the community?
What about the strength 0.5? It is often more useful to identify
community structure explicitly and consider nodes as full
members of their communities [3]. Another issue is that one
cannot distinguish the outliers from the overlapping nodes
based on the result U . For example, if a node’s membership
strength vector is [1/c,1/c, . . . ,1/c], one cannot tell whether

the node belongs to all of the communities with same strength
or does not belong to any of them.

To address these problems, we introduce the SBMF model.
The model can explicitly assign community memberships to
nodes and can distinguish outliers from overlapping nodes.

B. Model formulation

The SBMF can be defined as follows. Given a symmetric
binary matrix A of size n × n, we want to find a binary
matrix U of size n × c such that A ≈ UUT . The objective
matrix A is the adjacency matrix of the network and U is the
community membership indicator matrix: Uit = 1 if node i

is in the community t and 0 if not. If a node i belongs to
multiple communities, then the sum of the corresponding row
i of U will be larger than one (

∑
j Uij > 1). On the contrary,

if the node i is an outlier, the corresponding row i will be zero
(
∑

j Uij = 0).
We assume that there is a relatively small number of

outliers, which do not belong to any communities in the
network, and require that U should have as few zero rows
(
∑

j Uij = 0) as possible. We achieve this by adding a penalty
term into the optimization model. We use 1-norm1 instead of
Frobenius-norm because it gives better numerical results.

In summary, SBMF can be formulated as the following
constrained nonlinear programming:

min
U

‖A − UUT ‖1 +
∑

i

⎡
⎣1 − �

⎛
⎝∑

j

Uij

⎞
⎠

⎤
⎦ ,

(2)
subject to U 2

ij − Uij = 0, i = 1,2, . . . ,n; j = 1,2, . . . ,c,

11-norm of a matrix X is the largest column sum of abs(X), where
abs(X)ij = abs(Xij ) and abs(·) is the absolute value.

FIG. 1. (Color online) Illustrative example, with overlapping nodes 5 and 6, to show how the results of the proposed SBMF model can
reveal the community structure in complex networks.
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where � is the Heaviside step function: For some matrix X,

�(X)ij :=
{

1 if Xij > 0

0 if Xij � 0.

As one can see, all the elements of U are variables that need to
be determined, which means that it is a large-scale optimization
problem. Furthermore, the function � is not continuous and
the problem is nonsmooth. Hence the standard optimization
algorithms are not suitable. To overcome these difficulties,
we first initialize U by solving the NMF model (1) and then
discretize it by solving the following simpler unconstrained
nonlinear programming, instead of (2), to get an optimal
approximation solution

min
u

‖A − �(U − u)�(U − u)T ‖1

+
∑

i

(
1 −

∑
j

�(U − u)ij

)
, (3)

where u is a scalar.
To solve (3), we fix U and discretize the domain {u : 0 �

u � max(U )} to select û, which minimizes the optimization
problem (3). Finally, we obtain the binary matrix U as follows:

U := �(U − û).

To initialize U , we employ the algorithm of multiplicative
update rules developed for SNMF, which is summarized in
Algorithm 1. We set the iteration number C equal to 100 in this
paper. The time complexity is C×O(n2c) for updating U [26].

Algorithm 1: Symmetric non-negative matrix factorization
(least-squares error)

Input: A, C

Output: U

1: Initialize elements of U with non-negative random numbers
drawn from [0,1]

2: for t = 1 : C do
3: Uij := Uij

(AU )ij
(UUT U )ij

4: Uij := Uij∑
j Uij

5: end for
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FIG. 3. (Color online) Mean generalized NMI with the standard
deviation of SBMF on the overlapping LFR networks. The average
degree is denoted by 〈k〉. We run the algorithm ten times with random
initial conditions.

III. MODEL SELECTION

The problem of community detection is an unsupervised
learning task and the number of communities is unknown
in real applications. Several methods have been developed
to infer the number of communities. The most popular one
uses the modularity function Q [14,15], namely, choosing the
number of communities c at which the modularity function
achieves the maximum. However, as explained above, the
modularity function may lead to both the underestimation
and overestimation of community numbers [27]. To overcome
these limitations, we modify the partition density to better
estimate the appropriate number of communities. Originally,
the partition density was defined in terms of edges [3].

Formally, the standard partition density of the community
α can be defined as [3]

Dα = mα − (nα − 1)

nα(nα − 1)/2 − (nα − 1)
,

where nα and mα are the number of nodes and the number
of edges in the community α, respectively. Then the overall
partition density of the network can be defined as the weighted
sum of Dα, α = 1,2, . . . ,c. The weight for each community
was given by the number of edges in the community in the
original formulation. Here we use the number of nodes as the
weights because this formulation gives us better results. Thus
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FIG. 2. (Color online) Mean normalized mutual information with the standard deviation of Bayesian NMF and SBMF on (a) GN networks
and (b) nonoverlapping LFR networks. We run the algorithm ten times with random initial conditions.
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FIG. 4. Number of communities estimated by SBMF on over-
lapping LFR networks with the standard deviation errors. Here
〈k〉 represents the average degree of nodes in the network and
“Actual Number” represents the actual number of communities in
the corresponding LFR network. We run the algorithm ten times with
random initial conditions.

the partition density of the whole network is

D = 2

N

c∑
α=1

nα

mα − (nα − 1)

(nα − 2)(nα − 1)
,

where N is the sum of the sizes of different communities and
the number of outliers. Here N may be larger than the number
of nodes n in the network since the overlapping nodes are
counted more than once.

Nodes can be assigned to multiple communities. However,
in practice one can observe that the nodes with several
community labels are not common due to limited energy,
time, and resources. Hence we add a penalty term into the
denominator to control the nodes’ activity degree and the
definition can thus be updated as follows:

D = 2

N

c∑
α=1

nα

qα

mα − (nα − 1)

(nα − 2)(nα − 1)
,

where qα = maxj∈α lj , j ∈ α means that the node j belongs
to the community α, and lj is the number of community labels
that the node j has. Since the partition density D only considers
the local information in each community, it does not suffer
from the resolution limit problem [3].

IV. ILLUSTRATIVE EXAMPLE

In this section we use a toy example to illustrate how the
proposed method works. Figure 1 shows a toy network with
two communities, where nodes 5 and 6 are bridges between
them. First, we build the adjacency matrix A and solve the
SBMF model (2) with different numbers of communities
c. Then we calculate the partition density for each c to
select the best one. Finally, the corresponding binary matrix
U is obtained. As one can observe, the two overlapping
communities can be explicitly recovered from the output
U of SBMF model: 1 means that the node belongs to the
corresponding community and 0 means it does not.

V. EXPERIMENTAL RESULTS

In this section we test the effectiveness of our method on
both the synthetic and the real-world networks. Codes are
available through Ref. [28].

A. Description of data sets

1. The Girvan-Newman benchmark network. The Girvan-
Newman (GN) benchmark network [1] has four equally sized
nonoverlapping communities with 32 nodes each. On average
each node has Zin edges connecting with the others in its own
community and Zout edges connecting with the other three
communities. As expected, the communities become less clear
with increasing Zout. Here Zin + Zout is set equal to 16.

2. The Lancichinetti-Fortunato-Radicchi benchmark net-
work. The Lancichinetti-Fortunato-Radicchi (LFR) bench-
mark network [29] model was proposed to address most
characteristics of real networks, e.g., size of the network and
heterogeneous degree distribution, that the GN networks do
not capture. In LFR benchmarks both the degree and the
community size distributions obey power laws with exponents
γ and β. Each node has a fraction 1 − μ of its neighbors in
its own community and a fraction μ in the other communities.
Furthermore, nodes can be assigned to multiple communities.

In this paper we set the parameters of the LFR benchmark as
follows: The number of nodes is 1000, the maximum degree is
50, the exponent of the degree distribution γ is 2, and that of the
community size distribution β is 1. We set the parameters for
the nonoverlapping LFR benchmark as follows: The average
degree of the nodes is 20 and the range of the mixing parameter
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FIG. 5. Number of communities estimated by Bayesian NMF and SBMF on (a) GN and (b) nonoverlapping LFR networks with the standard
deviation errors. The black horizontal line is the actual number of communities. We run the algorithm ten times with random initial conditions.
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FIG. 6. Averaged partition density of SBMF versus community number on real-world networks: (a) football network, (b) political book
network, (c) dolphin network, and (d) jazz band network. We run the algorithm ten times with random initial conditions.

μ is from 0.1 to 0.6. For the overlapping LFR benchmark, we
set the parameters as follows: The average degree of the nodes
is from 15 to 25, the mixing parameter μ is 0.1, the minimum
community size is 20, the maximum community size is 100,
and the fraction of the overlapping nodes is from 0.1 to 0.5.

3. Football. This data set is the network of 115 American
football teams [1]. There are 613 edges. The teams are
represented as nodes and the nodes are connected if there
is a game between them. The teams are divided into 12
conferences, where the teams usually play more games with
others in the same conference, inducing community structure.

4. Political books.: This data set is the Amazon copurchas-
ing network with 105 books about U.S. politics [30]. There are
441 edges. Nodes are books and edges represent copurchasing
of books by the same buyers.

5. Dolphins. This data set is the social communication
network of 62 bottlenose dolphins that lived in Doubtful
Sound, New Zealand [31]. There are 159 edges.

6. Jazz bands. This data set is the collaboration network of
jazz bands [32]. There are 198 nodes representing the bands
and 2742 edges connecting the bands if there is at least one
musician in common.

B. Assessment standards

To evaluate the detection performance on nonoverlapping
synthetic networks (GN and nonoverlapping LFR), we use
the normalized mutual information [33]. The value can be

TABLE I. Number of communities estimated by Bayesian NMF
and SBMF on real-world networks. The last column lists the running
time of SBMF.

Data set Bayesian NMF SBMF Running time (s)

football 9.2 ± 0.63 12 ± 0 0.02
dolphin 7.6 ± 0.70 6 ± 0 0.01
political books 6.9 ± 0.57 5 ± 0 0.03
jazz 11.1 ± 0.74 2 ± 0 0.07

formulated as follows:

Inorm(M1,M2) =
∑k

i=1

∑k
j=1 nij ln nij n

n
(1)
i n

(2)
j√( ∑k

i=1 n
(1)
i ln n

(1)
i

n

)(∑k
j=1 n

(2)
j ln

n
(2)
j

n

) ,

where M1 and M2 are the ground-truth community label
and the computed community label, respectively, k is the
community number, n is the number of nodes, nij is the
number of nodes in the ground-truth community i that are
assigned to the computed community j , n

(1)
i is the number of

nodes in the ground-truth community i, n
(2)
j is the number

of nodes in the computed community j and ln here is
the natural logarithm. The larger the normalized mutual
information (NMI) value, the better the community partition.
For overlapping LFR benchmarks, we use the generalized
normalized mutual information [9].

C. Experimental results on synthetic networks

In this section we compare the Bayesian NMF [7] with
our SBMF model and give the numerical results of NMI

TABLE II. List of the abnormal teams that played more frequently
against the ones in the other conferences. The terms NS and NO

denote the times that the team played against other teams in the same
conference and in the other conferences, respectively.

Team ID NS NO Team ID NS NO

37 0 8 60 2 6
43 0 7 64 2 7
81 1 10 70 3 8
83 1 10 98 3 5
91 0 9 111 0 11
12 4 6 29 0 9
25 3 7 59 2 8
51 3 6
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FIG. 7. (Color online) Comparison of (a) real grouping and (b) communities found by the SBMF model in the football network. There are
no outliers and overlapping teams. All of the misclustered teams are abnormal ones, which are listed in Table II.

on the GN networks and the nonoverlapping LFR networks
and generalized NMI on the overlapping LFR networks. We
also compare the abilities of Bayesian NMF and SBMF to
infer the appropriate number of communities. The results are
averaged over ten trials and are shown in Figs. 2–5. From
these figures one can observe the following. (i) The results of
both the Bayesian NMF and the SBMF model decrease when
Zout or μ are increasing and the standard deviations are low.
(ii) SBMF consistently outperforms Bayesian NMF, especially
on the nonoverlapping LFR networks. For example, when
μ = 0.6, the NMI of the proposed model (96.32%) is 35%
higher than that of the Bayesian model (60.32%). (iii) On the
overlapping LFR networks, SBMF outperforms the methods
in [34], where a systematic comparison of different methods
on the overlapping LFR benchmarks with the same parameter
settings is conducted. In addition, the generalized NMI does
not decrease significantly with the increasing fraction of the
overlapping nodes, indicating that our model is applicable for
highly overlapping networks. (iv) The inferred community
numbers based on the modified partition density are closer
to the real ones and the standard deviations are lower. For
example, the community number of the GN networks has
been perfectly recovered. Note that the partition density can be
applied to both the cases of nonoverlapping and overlapping
communities, which makes it suitable for a wide range of
applications.
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FIG. 8. (Color online) Exponential entropy of the nodes in dif-
ferent conferences. The higher the value, the fuzzier the membership
degrees. For instance, eHi will be c if the node belongs equally to c

communities.

D. Experimental results on real networks

In this section we conduct experiments on the real-world
networks. Figure 6 gives the results of partition densities under
different community numbers c and Table I gives the inferred
community numbers of different networks.

We use the football network as a case study. The teams in the
network are assigned into 12 conferences, most of which play
more games against others in the same conference. However,
there are some abnormal teams that play against the ones
in other conferences more frequently. Table II lists the basic
information about these teams, among which teams 37, 43, 81,
83, and 91 are in the conference IA Independents [the black
ones in Fig. 7(a)] and teams 12, 25, 51, 60, 64, 70, and 98 are in
the conference Sunbelt [the dark green ones in Fig. 7(a), next
to the black ones]. To determine the best community number c,
we calculate the partition density given different c. The peak
value is achieved at c = 12. The corresponding partitioning
result of SBMF is shown in Fig. 7(b), from which one can
observe that (i) our proposed BMF model only misclusters the
abnormal teams, (ii) the abnormal teams are reallocated to the
other conferences based on the real topology structures, and
(iii) no outliers or overlapping teams are detected.

Based on the partitioning result, one can analyze the
membership degrees of nodes using the matrix U obtained
from Algorithm 1 before discretizing it. For example, one
can use the exponential entropy eHi , i = 1,2, . . . ,n [35], to
analyze the positions of different nodes in the corresponding
communities, where the entropy Hi is

Hi = −
∑

j

Uij ln Uij .

The exponential entropies of the nodes in ten normal confer-
ences (i.e., not including the conferences IA Independents and
Sunbelt) are shown in Fig. 8. The lower the value, the more
likely the node is to stay in its own community.

VI. CONCLUSION

In this paper we presented a symmetric binary matrix fac-
torization model to detect overlapping community structures.
The model can explicitly identify the community memberships
of the nodes, which are allowed to belong to multiple commu-
nities or to be outliers. We also gave a revised partition density
to automatically infer the community number in the network.
The experiments conducted on both the synthetic and the
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real-world networks showed the effectiveness of the proposed
method. In summary, the SBMF model is parameter-free, easy
to implement, and the partition density is good at determining
the number of communities. Based on our works, there
are several interesting problems for future work, including
direct optimization of partition density, generalization of the
proposed model to weighted networks and directed networks,
and applying the model to recommendation systems.

ACKNOWLEDGMENTS

Z.-Y.Z was supported by the National Natural Science
Foundation of China under Grant No. 61203295 and Program
for Innovation Research in Central University of Finance
and Economics. Y.W. was supported by the National Natural
Science Foundation of China under Grants No. 11131009 and
No. 61171007.

[1] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.
99, 7821 (2002).

[2] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature (London)
435, 814 (2005).

[3] Y. Ahn, J. Bagrow, and S. Lehmann, Nature (London) 466, 761
(2010).

[4] X.-S. Zhang, Z. Li, R.-S. Wang, and Y. Wang, J. Comb. Opt. 23,
425 (2012).

[5] S. Gregory, J. Stat. Mech. (2011) P02017.
[6] T. Nepusz, A. Petróczi, L. Négyessy, and F. Bazsó, Phys. Rev.

E 77, 016107 (2008).
[7] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, Phys. Rev. E

83, 066114 (2011).
[8] H. Li, J. Zhang, Z. Liu, L. Chen, and X. Zhang, Eur. Phys. J. B

85, 1 (2012).
[9] A. Lancichinetti, S. Fortunato, and J. Kertész, New J. Phys. 11,

033015 (2009).
[10] D. Lee and H. Seung, Nature (London) 401, 788 (1999).
[11] D. Seung and L. Lee, Adv. Neural Inf. Process. Syst. 13, 556

(2001).
[12] Z. Zhang, C. Ding, T. Li, and X. Zhang, in Proceedings of

the Seventh IEEE International Conference on Data Mining,
edited by N. Ramakrishnan, O. R. Zaı̈ane, Y. Shi, C. W. Clifton,
and X. Wu (IEEE Computer Society, Los Alamitos, 2007),
pp. 391–400.

[13] Z. Zhang, T. Li, C. Ding, X. Ren, and X. Zhang, Data Min.
Knowl. Disc. 20, 28 (2010).

[14] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113
(2004).

[15] M. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577 (2006).

[16] S. Fortunato and M. Barthelemy, Proc. Natl. Acad. Sci. 104, 36
(2007).

[17] J. P. Bagrow, Phys. Rev. E 85, 066118 (2012).
[18] X. Zhang, R. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, and

L. Chen, Europhys. Lett. 87, 38002 (2009).
[19] B. H. Good, Y. A. de Montjoye, and A. Clauset, Phys. Rev. E

81, 046106 (2010).
[20] J. Brunet, P. Tamayo, T. Golub, and J. Mesirov, Proc. Natl. Acad.

Sci. U.S.A. 101, 4164 (2004).
[21] Z. Zhang, T. Li, and C. Ding, Knowl. Inf. Syst. 34, 243 (2013).
[22] Z. Zhang (unpublished).
[23] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, Data Min. Knowl.

Disc. 22, 493 (2011).
[24] X. Ma, L. Gao, X. Yong, and L. Fu, Physica A 389, 187

(2010).
[25] M. Zarei, D. Izadi, and K. A. Samani, J. Stat. Mech. (2009)

P11013.
[26] C.-J. Lin, Neural Comput. 19, 2756 (2007).
[27] A. Kehagias, arXiv:1209.2678.
[28] https://github.com/ZhongYuanZhang/SBMF.git.
[29] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 016118

(2009).
[30] http://www.orgnet.com/cases.html
[31] D. Lusseau, K. Schneider, O. Boisseau, P. Haase, E. Slooten,

and S. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
[32] P. Gleiser and L. Danon, Adv. Complex Syst. 6, 565 (2003).
[33] A. Strehl and J. Ghosh, J. Mach. Learn. Res. 3, 583 (2002).
[34] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80, 056117

(2009).
[35] L. Campbell, Probab. Theory Relat. Fields 5, 217 (1966).

062803-7

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature03607
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1007/s10878-010-9356-0
http://dx.doi.org/10.1007/s10878-010-9356-0
http://dx.doi.org/10.1088/1742-5468/2011/02/P02017
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.77.016107
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1007/s10618-009-0145-2
http://dx.doi.org/10.1007/s10618-009-0145-2
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1103/PhysRevE.85.066118
http://dx.doi.org/10.1209/0295-5075/87/38002
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1007/s10115-011-0460-y
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1007/s10618-010-0181-y
http://dx.doi.org/10.1016/j.physa.2009.09.018
http://dx.doi.org/10.1016/j.physa.2009.09.018
http://dx.doi.org/10.1088/1742-5468/2009/11/P11013
http://dx.doi.org/10.1088/1742-5468/2009/11/P11013
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://arXiv.org/abs/1209.2678
https://github.com/ZhongYuanZhang/SBMF.git
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://www.orgnet.com/cases.html
http://dx.doi.org/10.1007/s00265-003-0651-y
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.80.056117



