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Abstract

Visiting multiple prescribers is a common method for obtaining prescription opioids for non-

medical use and has played an important role in fueling the United States opioid epidemic,

leading to increased drug use disorder and overdose. Recent studies show that centrality of

the bipartite network formed by prescription ties between patients and prescribers of opioids

is a promising indicator for drug seeking. However, node prominence in bipartite networks is

typically estimated with methods that do not fully account for the two-mode topology of the

underlying network. Although several algorithms have been proposed recently to address

this challenge, it is unclear how these algorithms perform on real-world networks. Here, we

compare their performance in the context of identifying opioid drug seeking behaviors by

applying them to massive bipartite networks of patients and providers extracted from insur-

ance claims data. We find that two variants of bipartite centrality are significantly better pre-

dictors of subsequent opioid overdose than traditional centrality estimates. Moreover, we

show that incorporating non-network attributes such as the potency of the opioid prescrip-

tions into the measures can further improve their performance. These findings can be repro-

duced on different datasets. Our results demonstrate the potential of bipartiteness-aware

indices for identifying patterns of high-risk behavior.

Prescription opioid-seeking for nonmedical use

Visiting multiple health care providers is a widespread method for obtaining opioids for non-

medical use, and played an important role in fueling the United States opioid epidemic [1,2].

From 1999 to 2018, age-adjusted rates of mortality by opioid overdose increased by approxi-

mately 240%, from 6.1 per 100,000 in 1999 to 20.7 per 100,000 in 2018 [3]. For many of these

years, increases in opioid overdose mortality rates mapped closely with increasing rates of opi-

oid prescriptions and their nonmedical use [4,5]. Studies estimate that as many as 25% of indi-

viduals who die from opioid overdose—be it from prescription or illicit sources—had multiple

simultaneous opioid prescriptions from different providers [2,6,7]. Given that users of
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nonmedical opioids tend to be geographically clustered [8,9] and tend to obtain opioids from

relatively narrow sets of sympathetic, lax, or complicit opioid providers [10–12], it is believed

that patterns of nonmedical opioid use correspond closely to patterns of deliberate prescrip-

tion drug-seeking through patient social networks [13]. In other words, it is likely that users of

nonmedical opioids leverage their social networks to identify and seek prescriptions from a

small subset of opioid providers.

Although visiting health care providers to obtain opioids for nonmedical use is a critical

predictor of opioid overdose, identifying this behavior among patients is a difficult task [13–

16]. One common measurement tracks whether a patient had a multiple provider episode

(MPE), defined by obtaining opioid prescriptions from multiple doctors simultaneously (com-

monly four) over a short period of time (commonly 90 days) [14,15]. However, classifying pre-

scription drug-seeking using MPE results in estimates with high specificity but low sensitivity:

very few patients obtain opioid prescriptions from multiple providers over a short period of

time [17]. Yet, lower thresholds for measuring opioid-seeking through MPEs are equally prob-

lematic, as many patients who obtain opioid prescriptions from two or three doctors during a

short time period often do so for legitimate (and often urgent) medical reasons.

A second common measurement for prescription opioid-seeking is based on the potency, or

the total morphine milligram equivalent (MME), of all opioids prescribed to a particular patient

during a particular interval of time [18]. However, MME does not always track closely with the

true abusability of a patient’s prescriptions. Many opioids have high MME but have relatively

low abuse rates due to their distinct pharmacological properties. For example, buprenorphine

has high MME, but its slow absorption rate and its tendency to block certain opioid receptors in

the brain substantially reduce its use among nonmedical opioid seekers. In fact, these properties

make buprenorphine an effective medication for opioid use disorder [19]. In addition, many

individuals who receive a large total MME of opioid prescriptions obtain them from only a sin-

gle doctor, and many providers of high MME drugs are specialists (e.g., oncologists) that are

unlikely to be identified and sought out by people that seek opioids for nonmedical use.

Because prescription drug-seeking is a relational behavior, several studies have proposed using

social network analysis to identify it [12,17,20–22]. Patients who seek nonmedical prescription

drugs typically visit providers who are disproportionately willing to prescribe opioids in an

increasingly regulated environment. The providers may be sympathetic to pain patients who are

longtime users of opioids and have developed a high tolerance. More problematic are providers

who are unaware of the risks of opioid addiction, have poor training in identifying appropriate

analgesic use, are easily exploited by fraudulent patients, or because the providers are directly

engaged in illegal drug diversion [23,24]. For this reason, patients seeking prescriptions for non-

medical use are believed to visit these same sets of providers and to recommend such providers to

each other [8,21,22]. In aggregate, shared preferences for providers and the tendency to find pro-

viders through patient referral networks should result in clustering of patients engaging in drug-

seeking around the same sets of opioid providers. This would result in patients seeking opioids

for nonmedical use holding prominent structural positions within patient-provider opioid pre-

scription networks [23]. Based on this observation, two studies found that network centrality in a

patient-provider opioid prescription network is strongly associated with other common measures

of nonmedical prescription opioid use and that centrality is significantly more predictive of future

opioid overdoses than are most traditional measures [17,21].

Network centrality

Centrality is a key analytical tool in social network analysis, capturing important information

about an individual’s prominence or role within a given network [25,26]. For example, a
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scientist’s centrality in a scientist-paper network captures the scientist’s degree of interdisci-

plinary bridging and opinion leadership [27,28]; a patient’s centrality in a patient-provider

prescription network may reflect the extent to which the patient is deliberately searching for

sympathetic, lax, or complicit opioid providers [21,23]. Both scientist-paper and patient-pro-

vider networks are examples of bipartite (or two-mode) networks, where social ties only occur

across but not within two distinct sets (or modes) of actors [25,29]. In the case of scientist-

paper networks, scientists are only connected through their shared publications; in patient-

provider prescription networks, patients are only affiliated to each other through their shared

providers.

Despite substantial research interest in measuring node prominence, many algorithms,

such as PageRank [30] or eigenvector centrality, are designed primarily for unipartite (one-

mode) networks. In these cases, social ties are assumed to be unconstrained and thus possible

between every pair of nodes [31]. These centrality algorithms cannot take into account the fact

that ties within each mode of a bipartite social network are never present; therefore, when

applied to bipartite social networks, these centrality algorithms can provide misleading results

[32,33]. Indeed, the biases induced by applying eigenvector-based centrality algorithms to

bipartite social networks have been a source of concern in social network research for decades

[25,31,34,35]. A common workaround is one-mode projection, which reduces the bipartite

network into a unipartite network consisting of only one mode of nodes, then calculates the

centrality indices [21,35]. Connections are allowed between all node pairs in the projection,

circumventing the challenge brought by the bipartite nature of the original network. Yet, the

projection might cause information loss and distort the network topology [36], also leading to

misleading results.

To address these issues, centrality indices specifically designed for bipartite networks,

such as HITS, CoHITS, BGRM, and BiRank, have been developed [35,37–39]. They oper-

ate similarly to eigenvector centrality and PageRank in that they iteratively update node

centrality estimates based on each node’s connectivity and walk distance to other promi-

nent nodes in the social network; however, bipartite algorithms differ in that they explic-

itly consider bipartite structure and are likely to produce more accurate estimates of node

prominence.

To confirm and compare the effectiveness of bipartiteness-aware node prominence index

in identifying opioid drug seekers, the present paper studies four variants of bipartite centrality

index, i.e., HITS [40], CoHITS [37], BGRM [39], and BiRank [38], in a real-world social net-

work of patient-provider relationships. We also project the bipartite patient-provider network

into a unipartite patient-patient network and apply PageRank to produce a baseline [17,21].

Lacking the ground truth of drug seeking behavior, we use opioid overdose diagnosis as the

outcome and evaluate how strongly each index is associated with the outcome for patients

receiving opioid prescriptions. We further take advantage of the flexibility of bipartite central-

ity indices and incorporate attribute of patient-provider ties into the estimates. We illustrate

how doing so can improve our ability to capture specific aspects of prescription drug-seeking

that centrality on the unweighted network cannot.

Centrality in bipartite networks

In this section we introduce the bipartite centrality indices tested in this paper. We start

with the original PageRank index then describe how it can be expanded to bipartite net-

works. Finally, we describe how bipartite centrality indices can incorporate non-network

information as edge weights to better capture the characteristics of the underlying social

processes.
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PageRank centrality index on one mode network projection

PageRank is a specialized variant of eigenvector centrality that measures the extent to which a

node is connected to other prominent nodes in a social network [30,41]. Essentially, PageRank

estimates the stationary probability distribution of random walkers over all nodes [33]. Nodes

that can be easily reached by random walkers, e.g., by having many incoming edges, are

assigned larger PageRank scores.

The algorithm for PageRank is formalized as follows:

R ið Þ ¼ a
X

j2MðiÞ

RðjÞ
koutj

þ ð1 � aÞR0ðiÞ; ð1Þ

R(i) represents the PageRank score of node i, α indicates a damping factor assigned to the

random walk (typically set to 0.85), M(i) represents the set of nodes that point to node i, koutj

indicates the out-degree of node j, and R0(i) is typically set to 1

N where N represents the size of

the network. The algorithm first divides node ranks by the degree of each node
RðjÞ
koutj

to normalize

the calculation, which is its key difference from eigenvector centrality. In matrix notation, if R

represents a vector of PageRank values for all the nodes and S represents the normalized tran-

sition matrix, PageRank can be expressed as:

R ¼ aSRþ ð1 � aÞR0 ð2Þ

Although PageRank and other variants of eigenvector centrality were designed for unipar-

tite graphs, these algorithms are frequently applied to studies of bipartite networks. However,

when they are applied, the original network is usually converted to a unipartite network. The

most common methods for converting bipartite networks to unipartite networks are (1) to

take the cross product of the original network such that the resulting network represents tran-

sitive ties between nodes on a single mode of the original network [29,32,42,43], (2) to treat

the network as if ties were possible within modes by adding empty rows for each node that was

only represented in the columns of the original network and vice-versa [25,31], or (3) to dual

project the network by estimating ranks on each mode of the network separately before com-

bining the network back into its original form [34,44–46]. These conversion methods can

interact with some centrality algorithms differently than others, but for PageRank and other

variations of eigenvector centrality, each method returns nearly identical node ranks [31]. At

the same time, such conversion methods always result in some degree of network distortion

that can bias centrality estimates or even give rise to wholly spurious network structures

[42,47].

Within a patient-provider network, we expect PageRank to measure a patient’s network

centrality and likely prescription drug-seeking behavior to a large extent, albeit somewhat

imprecisely. PageRank is likely to assign high centrality estimates to patients connected to fre-

quent opioid providers and to patients who see the same sets of doctors as others who may be

seeking drugs for nonmedical use. However, PageRank on the one mode projection of a

patient-provider network will treat all transitive ties as having the same structural importance.

This means that a patient with only one provider tie could have the same degree in the pro-

jected network as a patient who has ties to multiple weakly-connected doctors. Since PageRank

is highly influenced by a node’s degree, this feature of the one-mode network projection is

likely to significantly bias how well PageRank captures true prescription drug-seeking behav-

ior. We expect some patients with connections to one or two well-connected providers to have

high PageRank estimates, while patients with connections to larger number of poorly con-

nected providers may have low PageRank estimates. Both outcomes are exactly the opposite of
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how we would typically want to define and operationalize patients who visit multiple providers

to obtain opioids for nonmedical use. In addition, the one mode projection may distort the

estimated patient behavior in other subtle but not necessarily predictable ways.

Bipartite centrality indices

Bipartite centrality indices are a direct extension of the PageRank index and follow the intui-

tion that a vertex should have higher centrality if it is connected to other vertices with high

centrality. Like PageRank, bipartite centrality algorithms update centrality estimates for nodes

iteratively based on each node’s connection to others and based on the most recent rank esti-

mates of each node’s alters. However, bipartite algorithms differ from PageRank in their ability

to estimate centrality directly on a bipartite network simultaneously for both modes of the net-

work. Bipartite centrality algorithms respect the absence of ties between nodes within the same

mode of the network, and the necessity for centrality to only compare nodes within the same

mode of a network. In every iteration, bipartite centrality algorithms update centrality esti-

mates for every node in the network based on their connections to other nodes in the network,

their centrality estimates in the previous stage of the algorithm, and by their connections’ cen-

trality estimates in each stage of the algorithm. Put together, bipartite centrality algorithms

propagate the centrality estimates back and forth across each mode of the network throughout

each iteration of the algorithm.

The bipartite centrality algorithms tested in this study are HITS, CoHITS, BGRM, and BiR-

ank [37–40]. These algorithms were developed separately and for distinct purposes, but many

of their underlying similarities have been identified and systematized in recent work by He

et al. [38] The algorithm underlying all bipartite centrality measures is formalized as follows:

p jð Þ ¼ a
XD

i¼1

wij

S�pðiÞ
dðiÞ þ ð1 � aÞp0ðjÞ;

d ið Þ ¼ b
XP

j¼1

wij

S�dðjÞ
pðjÞ þ ð1 � bÞd0ðiÞ ð3Þ

Here p(j) and d(i) represent the bipartite centrality of patient j and provider i separately, α
and β represent the damping factors for the random walk (typically set to 0.85), D and P repre-

sent the number of providers and patients in the network, wij indicates the element of the adja-

cency matrix WD×P at coordinate (i,j). S�pðiÞ and S�dðjÞ represent normalizers that differ across

each bipartite centrality algorithm and are outlined further below. In matrix notation, if p and

d represent a vector of centrality estimates of every node in each mode of the network and Sp
and Sd represent transition matrices of the network across iterations, the bipartite centrality

algorithm can be expressed as:

p ¼ aSpdþ ð1 � aÞp
0;

d ¼ bSdpþ ð1 � bÞd
0

ð4Þ

Variations of the bipartite centrality algorithm differ primarily in how they normalize the

network prior to iteration. Kleinberg’s HITS (Hyperlink-Induced Topic Search) was originally

designed for estimating node prominence in one mode networks by iteratively ranking nodes

according to their role as an “authority” in the network and their role as a “hub” in the network

[40]. Nodes with high authority scores are defined by having a high indegree from high-rank-

ing hubs; and nodes with high hub scores are defined by having a high outdegree to nodes
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with high authority. The version of HITS tested here was slightly expanded by He et al. to

interface with bipartite networks [38], but is otherwise identical to the algorithm proposed by

Kleinberg. HITS differs from every other bipartite centrality index in that it does not normalize

the input adjacency matrix prior to initializing its iteration process, analogously to the eigen-

vector centrality. To ensure convergence, HITS normalizes centrality estimates after every iter-

ation by dividing each node’s rank value by the sum of all rank values on that mode. The

design of HITS fully respects the bipartite network topology. However, HITS is known for its

tendency to produce unintuitive centrality estimates, even in comparison to PageRank [48].

There are a variety of network features that can lead to this problem, but HITS’ most central

weakness is its sensitivity to outliers. Nodes with high degrees can have an extreme and often

unexpected influence on how HITS ranks all other nodes in the network. A similar phenome-

non is the localization of Eigenvector centrality onto a small number of hub nodes [49].

CoHITS [37] is named for its ability to better-incorporate content information into its algo-

rithm than HITS (the “Co” in CoHITS). Unlike HITS, CoHITS normalizes the input network

prior to iterations to avoid divergence. In particular, CoHITS normalizes the adjacency matrix

by the outdegree of the source nodes, simulating random walks on the bipartite networks. In

other words, CoHITS estimates reflect the probability distribution of finding the random

walkers on the nodes. Considering this interpretation, CoHITS is very similar to PageRank

when applied directly to bipartite networks. The major difference is that CoHITS ranks the

nodes from two modes separately while PageRank is not aware of the bipartite nature of the

network. A possible weakness of CoHITS is that it only normalizes the network on the source

nodes; nodes with high indegrees might still exert an undue influence on the estimates [38].

BGRM (Bipartite Graph Reinforcement Model) was developed for automating web image

annotation [39]. Like CoHITS, BGRM also normalizes the adjacency matrix to avoid diver-

gence. The difference is that BGRM adopts a symmetrical weighting scheme, whereby an edge

is normalized by the degree of both ends of the vertex simultaneously. This design reduces the

impact of high indegree nodes but might introduce other biases. For example, BGRM may

assign, in the case of patient-provider network, overly low centrality estimates to high degree

patients that are connected to high degree providers and overly high centrality estimates to

low degree patients that are connected to low degree providers.

BiRank is the newest bipartite centrality index and was developed to improve upon the the-

oretical advantages of BGRM’s symmetric normalization scheme [38]. BiRank divides each

edge by the square root degree of the source node and the square root degree of the target

node prior to iteration. This means that BiRank exerts a significantly lower degree of normali-

zation on the inputted network than BGRM, and in theory, should be less prone to outliers on

either mode of the network than CoHITS.

A summary of the differences among the bipartite centrality algorithms’ normalization

schemes are formalized in Table 1.

Edge weights in bipartite centrality indices

Some important properties of nodes are not captured in the network structure itself. Focusing

just on the network structure, we might ignore important information about why some nodes

are more central than others. In our case, the tendency for patients to seek providers who

administer large quantities of potent opioids is not captured but may be critical for predicting

outcomes like overdose. The bipartite centrality indices considered here provide an interesting

solution; we can assign weights to provider-patient ties by a relevant edge attribute — the total

morphine milligram equivalent (MME) of opioids prescribed to the patient. MME is a com-

mon measurement for estimating the potency of opioid drugs that is based on the equivalence
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of an opioid prescription with 1mg of orally taken morphine per day. MME typically refers to

the potency of a single dosage of an opioid, but some scholars examine the total MME of all

pills prescribed to a particular patient to estimate the potency and quantity of opioids pre-

scribed, and occasionally, to track potential fraudulent behavior and nonmedical use [18]. By

weighting each edge of the patient-provider network by the total MME of prescriptions

administered by a provider to a particular patient, we improve our measurement of centrality

by incorporating patient preferences for providers that administer large quantities of highly

potent opioids. This strategy should be particularly effective for reducing the centrality esti-

mates of patients who are connected to providers who only administer short term analgesic

treatments, such as surgeons and emergency care physicians.

Methods

Data

Data are drawn from Optum’s de-identified Clinformatics1 Data Mart Database, a national,

commercial, and Medicare Advantage claims database that contains dated information about

patient medical histories, office appointments, and prescriptions during the years 2007 to

2018. The sample does not include medical claims across all providers, but there are many

regions where the medical claims database covers the plurality of patient-provider visits. We

lose coverage of patients who switch medical plans over time; however, most patients have

multiple years of data in the sample. Due to our theoretical interest in opioid prescription

drug-seeking, we limit our sample to patients who have ever received an opioid prescription,

identified via their national drug codes (NDCs). Patient-quarters (three-month intervals) com-

prise our unit of analysis. This study was approved by the Indiana University Institutional

Review Board. Owing to the use of deidentified patient data, the need for informed consent

was waived.

To ensure an optimal context for comparing different measures of patient behavior, we

focus our analysis to 2009 quarter 2 through 2012 quarter 2. We choose this time period

because these years had very high rates of prescription opioid abuse [5,50]. By 2012, many

states implemented prescription drug monitoring programs (PDMPs) that curtailed rates of

fraud and abuse and contributed to a rise in consumption of more easily accessible illicit opi-

oid substances that are not prescribed by health professionals [51,52]. In other words, focusing

on the years 2009 to 2012 reduces the degree to which use of illicit opioids (e.g., heroin, fenta-

nyl) is likely to create noise in our predictions of opioid overdose via prescription drug-

seeking.

We also focus our analytic sample on a narrow region in the U.S. Appalachian Mountain

range. Appalachia is a well-known hotspot of opioid overdoses in the U.S. Moreover,

Table 1. Summary of bipartite centrality algorithms’ normalization schemes.

Algorithm Transition Matrix of

Top Mode (Sp)

Transition Matrix of

Bottom Mode (Sd)

HITS WT W
CoHITS WTK � 1

d WK � 1
p

BGRM K � 1
p WTK � 1

d K � 1
d WK � 1

p

BiRank K � 1=2
p WTK � 1=2

d K � 1=2

d WK � 1=2
p

Kd and Kp represent diagonal matrices with the generalized degrees (sum of edge weights) on the diagonal of each

mode of the network. Specifically, (Kd)ii = ∑iwij and (Kp)jj = ∑iwji.

https://doi.org/10.1371/journal.pone.0273569.t001
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narrowing analysis to a small geographic region reduces the complexity of our methodological

approach. Specifically, physical proximity plays a large role in which providers a patient

chooses to seek opioid prescriptions from. Estimating centrality across a network that spans a

broad geographic region would likely induce network endogeneity that biases the degree to

which centrality reflects true drug-seeking behavior. Although there are a variety of methods

for accounting for network endogeneity [53–56], narrowing our analysis to a small geographic

region is the most parsimonious option. Since we are primarily concerned with comparing dif-

ferent measures of centrality, we endeavor to keep our analytic approach as straightforward as

possible. The geographic region of our analytic sample and corresponding rates of opioid over-

dose within Appalachia are illustrated in Fig 1. The boundary of the analytic region is com-

posed of county lines across five states, including West Virginia, Virginia, North Carolina,

Kentucky, and Tennessee. In total, our subsample within this region and time period includes

245,133 unique patients, 38,486 unique prescribers, and 1,920,554 patient-quarters.

Fig 1. Analytic sample within Appalachia. Thick borders indicate sample boundaries; medium borders indicate state boundaries; thin borders indicate county

boundaries. Different shades represent the average MME of patients for all counties in Appalachia. The estimates are based on the first quarter of 2011. The figure was

generated using the TIGER/Line Shapefiles product provided by the U.S. Census Bureau [57].

https://doi.org/10.1371/journal.pone.0273569.g001
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Network formation

We use separate intervals from the opioid prescription dataset to construct a longitudinal

bipartite social network of patient-provider ties. Ties are defined by whether a patient received

at least one opioid prescription from a provider during a given interval. Repeated ties are not

treated as valued in the unweighted bipartite network, but we do give weight to repeated tran-

sitive ties in the one-mode network projection with PageRank centrality, and we indirectly

give weight to repeated ties in our secondary analyses of the MME-weighted patient-provider

network. Although our unit of analysis is patient-quarters, we construct the longitudinal bipar-

tite social network with three-quarter (nine month) rolling windows of patient-provider pre-

scriptions. We made this choice to better reflect the duration of true drug-seeking behavior.

With one quarter intervals, we noticed that some patients exhibited periods of limited behavior

directly preceded and followed by extreme periods of prescription drug-seeking. These short

gaps do not have any clear negative association (or lagged negative association) with reduced

rates of opioid overdose. We believe it is unlikely that such patients truly stopped seeking

drugs during these short intervals. Rather, these patients either had short periods of difficulty

in successfully attaining opioid prescriptions or short periods of reprieve in visiting providers

due to their recent successes in attaining drugs either legally or illegally. However, to ensure

that our analyses are not biased by our choice to construct the patient-provider network with

three-quarter rolling windows of prescription data, we re-estimate all models with networks

comprised of only a single quarter of prescription data and find that these yield substantively

identical results to those constructed using three quarters.

Statistical models

We compare centrality estimates of prescription drug-seeking behavior by examining their

ability to predict subsequent opioid overdose. We estimate the degree to which each indepen-

dent and control variable is associated with a patient’s conditional probability (hazard) of opi-

oid overdose over time with Cox proportional hazard models [58], a type of event history

model that are often used for studying the association between uncommon events with multi-

ple predictors [59]. One key advantage of Cox models over traditional regression methods is

their ability to prevent censorship bias. Many patients were dropped from the sample for rea-

sons unrelated to opioid overdose (often because they switched employers and insurance pro-

viders), while some others died from opioid overdose and were censored due to their death. If

we used logistic regression rather than Cox regression, censorship would cause bias in parame-

ter estimates because the missing information is related to the dependent variable. In contrast,

Cox models prevent censorship bias by removing censored observations from the risk set; cen-

sored individuals only contribute to hazard estimates during the years in which they were pres-

ent. A second key advantage of Cox proportional hazard models is that they are semi-

parametric. Traditional regression methods assume that data points lie across a particular dis-

tribution of event-times, be it normal, logistic, or Poisson, but Cox models make no such

assumptions. This is critical for our analysis because we have no a priori hypothesis about the

distribution of opioid overdose event times. Overdose events are rare and are unlikely to follow

any typical probability distribution.

To compare the extent to which different measurements of centrality are representative of

prescription drug-seeking behavior and predictive of opioid overdose, we estimate separate

Cox proportional hazard models for each measurement of centrality. We manipulate each

model specification only by the type of centrality measure included to identify patient behav-

ior; we do not include all centrality measures at once because the measures are highly collinear.

We compare the degree to which each model fits the data based on their resulting Akaike

PLOS ONE Comparing measures of centrality in bipartite patient-prescriber networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0273569 August 30, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0273569


Information Criterion (AIC) [60]. AIC estimates a statistical model’s relative quality by using

its maximum likelihood of each model while penalizing for each additional estimated parame-

ter, such that models that over fit will have worse AIC than models with fewer parameters. A

model with a substantially lower AIC value than others considered can be statistically shown

to fit the data better than the other. For this reason, we use AIC to measure which centrality

index best reflects true prescription drug-seeking behavior.

Variables

The dependent variable across models is opioid overdose, defined by whether a patient was

marked with a corresponding International Classification of Diseases 9th edition code (ICD-9)

[61]. Given that opioid overdose events are rare and the substances underlying opioid over-

doses are often mixed and ambiguous, we do not attempt to distinguish patients who had over-

dosed on illicit or unspecified narcotic substances from those who had overdosed on

prescribed opioids. To improve our ability to estimate the causal effect of patient behavior on

opioid overdose and account for the tendency of prescription drug-seeking to precede opioid

overdose, we also lag this dependent variable by one quarter. In total, our sample includes 390

overdose events.

The key independent variable across models is patient centrality. Centrality is estimated

with HITS, CoHITS, BGRM, and BiRank via the BiRank statistical package [62]. We also apply

PageRank on the one-mode network projection to provide a baseline. Although many other

network centrality indices are available, these methods do not necessarily work well on large

networks. For instance, eigenvector centrality is known to localize to a small set of nodes in

large networks [49]. PageRank, on the other hand, has been proven robust and informative in

the current context according to the literature [17,21]. We normalize all centrality measures

across network components to keep centrality estimates at a consistent scale, and we take the

natural log transformation of each centrality measure to account for their right-skewed distri-

bution of centrality estimates. Finally, the transformed centrality measures are converted to z-

scores. To ensure that the choice to take the natural log transformation of each centrality mea-

sure did not bias our estimates, we also estimated all models with centrality measures that were

left untransformed and with centrality measures that were dichotomized above and below the

99th percentile. Across all transformations of centrality, each model yielded substantively simi-

lar results.

We include a variety of independent variables to control for any spurious relationship

between centrality and opioid overdose. We include age (in years) and sex (female) to reflect

the slightly increased propensity for opioid overdose by people of middle age and male sex.

We examine two individual-level network parameters that are likely associated with patient

drug-seeking behavior, including patient degree (number of unique providers) and transitive

ties (number of connections to other patients through one’s providers). These network param-

eters are likely to be associated with patient behavior, but neither of these parameters closely

reflect a patient’s position within the entire structure of the patient-provider network. More

specifically, neither network parameter reflects the tendency for patients to cluster around the

same sets of lenient providers or to seek providers who tend to administer large quantities of

potent opioids. Excluding these individual-level network parameters generated more statisti-

cally significant parameter estimates for network centrality; however, we include these param-

eters as an indirect test for whether network centrality provides any distinct contribution to

predicting opioid overdose beyond traditional measures of drug-seeking behavior based on

individual-level characteristics. Finally, we control for patients who are likely to receive more

opioid prescriptions due to having a particular disease rather than due to nonmedical opioid
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use. These controls include whether a patient had hepatitis C (HEPC), human immunodefi-

ciency virus (HIV), cancer, a psychiatric disorder, was receiving medication assisted treat-

ments (MAT), or medication for opioid use disorder, or whether the patient was in palliative

care.

Results

Visualization of the patient-provider network

To orient readers to the analytic sample, we first illustrate the largest and second largest con-

nected components of the patient-provider network during the first period of analysis (Octo-

ber 1, 2008 to June 30, 2009) in Fig 2A and 2B. The total number of patients sampled during

the first period of analysis is 148,182, but during this period, only 41,698 patients received opi-

oids from any doctor and are represented in the network. The largest component of the net-

work comprises 33,024 patients or 79.2% of patients who received any opioids, 8,273

providers, and 49,738 edges, and the second largest component of the network comprises 91

patients or 0.2% of patients who received any opioids, 64 providers, and 164 edges. The high

coverage of the largest connected component implies that patient-provider ties in this region

Fig 2. Sociogram of two largest network components. A indicates the largest network component; B indicates second largest network component. Networks

are constructed from all opioid prescription ties from October 1, 2008 to June 30, 2009. Nodes are sized according to their BiRank centrality. Circular nodes

indicate patients; square nodes indicate providers. To highlight the discrepancy between BiRank and PageRank estimates for the same nodes, the nodes are

colored black if their BiRank value is two standard deviations above the mean BiRank value and if their PageRank value is below the mean PageRank value.

https://doi.org/10.1371/journal.pone.0273569.g002
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of Appalachia represent a relatively coherent and well-connected network. Another notable

pattern in Fig 2 is that no nodes appear to have extreme degrees. Although Fig 2A contains

four somewhat denser clusters of nodes, there are many visible nodes and ties that lie between

each cluster.

Nodes in each mode of the network in Fig 2 are scaled according to their BiRank centrality

and shaped according to whether the node represents a patient (circle) or a doctor (square).

To emphasize differences between BiRank and PageRank estimates, we color nodes black if

their BiRank is two standard deviations above the mean BiRank and if their PageRank is below

the mean PageRank. Nodes towards the center of Fig 2B and within the four clusters of Fig 2A

tend to be grey, implying that PageRank and BiRank tend to assign similar ranks to well-con-

nected nodes. Most black nodes appear towards the periphery of each network, implying that

BiRank is more likely to assign above-mean centrality estimates for seemingly peripheral

nodes than PageRank. However, a close examination of Fig 2B reveals that most patients with

high BiRank and low PageRank are connected to multiple poorly connected providers in the

global network. These patterns are consistent with our predictions: in comparison to BiRank,

PageRank estimates relatively low centrality to high degree patients that are connected to low

degree providers.

Correlation between different centrality indices

We examine the relationship between different centrality indices and key network parameters

by plotting their correlation matrix in Fig 3. Most centrality indices are moderately and posi-

tively correlated; however, HITS has a fairly low correlation with all other centrality methods

and BGRM has a negative correlation with PageRank. BGRM’s negative correlation with

Fig 3. Correlation matrix of different centrality indices and key network parameters. The Pearson correlations are

based on the full analytic sample (n = 1,920,554 patient-quarters). All variables are log-transformed. Spearman

correlations yield qualitatively similar results.

https://doi.org/10.1371/journal.pone.0273569.g003
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PageRank is also reflected in its negative correlation with transitive ties, the latter of which is

highly correlated with PageRank. On the other hand, most bipartite centrality indices have

weak associations with transitive ties. Further exploration suggests that this weak association

may result from a slight tendency towards negative degree assortativity (Pearson’s r = -0.03) in

the provider-patient network; low degree patients tend to be connected to high-degree provid-

ers. Degree substantially contributes to bipartite centrality indices; therefore, it is understand-

able that the negative degree assortatitivity would induce a negative association between

bipartite centrality and transitive ties. Another noteworthy correlation is the strong relation-

ship between BiRank and CoHITS (Pearson’s r = 0.98). Even prior to log-transforming each

variable, the correlation between BiRank and CoHITS is quite high (Pearson’s r = 0.96). This

correlation is much stronger than the correlation between BiRank and BGRM, even though

BiRank and BGRM both use symmetric normalization whereas CoHITS does not.

Linear association between centrality indices and opioid overdose

We illustrate the linear association between each weighted and unweighted centrality measure

with opioid overdose in Fig 4. The association is derived from a simple linear regression: Y =

b0+b1×X, where Y represents opioid overdose diagnoses, b0 is the intercept, X represents the z-

scores of the centrality indices, and b1 measures the association. The results show how a one

standard deviation change from the mean of a centrality score is associated with a patient’s

predicted probability of having an opioid overdose diagnosis.

All centrality estimates are only modestly associated with subsequent opioid overdose, but

this is expected given the infrequency of overdose events and the complicated set of conditions

that cause such events. The centrality index that produces the greatest association with opioid

Fig 4. Linear association between network centrality indices and opioid. The centrality estimates are based on patient-provider network of opioid

prescriptions. The slopes are based on the full analytic sample (n = 1,920,554 patient-quarters).

https://doi.org/10.1371/journal.pone.0273569.g004
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overdose is CoHITS on the MME-weighted network, whereas HITS has the lowest association

with opioid overdose. However, it is important to remember that these are raw associations

that could be confounded by a variety of factors. The utility of any new benchmark for identi-

fying drug-seeking behavior is largely based on the unique information that the algorithm can

provide for predicting opioid overdose beyond that of traditional identifiers. Therefore, these

patterns alone should not be interpreted as conclusive evidence that CoHITS on the MME-

weighted network is the best predictor of opioid overdose. That said, the extremely limited

association of opioid overdose with BGRM and HITS suggests that these algorithms may pro-

vide poor direct proxies of prescription drug-seeking behavior.

Results of regression models

To account for confounding factors, we run multiple Cox proportional hazard models that

estimate each patient’s hazard to overdose on opioids throughout the period of analysis. The

results are shown in Table 2. Sample statistics about each variable are included in S1 Table.

Across models, each parameter estimate illustrates the hazard ratio increase associated with a

one standard deviation increase in that particular parameter. For example, Table 2 indicates

that an individual with a logged BiRank score that is one standard deviation higher than

another patient’s logged BiRank score has 1.28 times (or 28%) increased expected hazard of

opioid overdose. We include a baseline model that only contains control variables. The other

five models differ by their measures of network centrality. Parameter estimates for all centrality

scores are positive, but are only statistically significant for CoHITS, BGRM, and BiRank.

The other parameter estimates in Table 2 are mostly consistent with expectations. Age and

gender are not significantly associated with opioid overdose, whereas degree and transitive ties

are both significantly and positively associated with opioid overdose. We observe large

Table 2. Cox proportional hazard models for opioid overdose.

Baseline PageRank HITS CoHITS BGRM BiRank

Centrality - 1.064 1.040 1.217��� 1.338��� 1.279���

Demographics

Age 0.920 0.930 0.924 0.957 0.936 0.963

Female 0.931 0.929 0.930 0.930 0.927 0.927

Network Proxies

Degree (# Providers) 1.880��� 1.844��� 1.887��� 1.576��� 1.668��� 1.540���

Transitive Tiesa 1.338��� 1.293��� 1.319��� 1.418��� 1.606��� 1.466���

Related Disorders

HEPC 2.178 2.188 2.213� 1.974 1.947 1.985

HIV 2.677 2.678 2.713 2.696 2.510 2.657

Cancer 1.202 1.206 1.201 1.168 1.151 1.161

Psych Disorder 7.358��� 7.322��� 7.306��� 7.130��� 7.237��� 7.107���

Palliative Care 4.904��� 4.905��� 4.995��� 4.401��� 4.510��� 4.377���

MAT Userb 2.488�� 2.523�� 2.439�� 2.569�� 2.407�� 2.538��

AIC 9269 9269 9269 9248 9242 9244

� = p < 0.05

�� = p < 0.01

��� = p < 0.001. Time-to-event is based on one quarter intervals between 2009 quarter 2 and 2012 quarter 2. There are n = 1,920,554 patient-quarters. The number of

overdose events is 390. The parameters are standardized and reported as hazard ratios. a) Number of patient-patient ties through providers. b) Patient is receiving

medication assisted therapy for opioid use disorder.

https://doi.org/10.1371/journal.pone.0273569.t002
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increases in expected hazards for opioid overdose among individuals with psychological disor-

ders, on palliative care, or on medication assisted treatments for opioid addiction. The associa-

tions of opioid overdose with HEPC, HIV, and cancer are not statistically significant, but the

parameter estimate for each variable is positive and large. It is likely that these variables have

positive parameter estimates but weak statistical significance due to the limited number of

overdose cases in our sample.

The models’ AIC values in Table 2 indicate the degree to which the models fit the data.

Compared with the baseline model, adding PageRank and HITS centrality measures to the

regression models does not substantially alter the AIC value. In comparison to the model mea-

suring centrality with PageRank, the BiRank model has an AIC value that is (9269–9244 =) 25

units lower. This indicates that the model with BiRank centrality index is significantly more

likely to provide relevant unique information and improve model fit than the model with

PageRank centrality (p = exp(-25/2); p< 0.001). Among the bipartite centrality indices, the

model with HITS produces the highest AIC value although it is not substantially worse than

the model with PageRank. On the other hand, models with CoHITS, BGRM, and BiRank have

substantially lower AIC values. The differences among them are relatively small, for example,

the difference in model fit between BGRM and CoHITS barely passes statistical significance at

p = 0.05.

It is worth mentioning that BGRM has a much weaker linear association with opioid over-

dose than the other indices according to Fig 4. We run supplementary models without patient

degree and transitive ties, and the model with BGRM is substantially worse than the models

with BiRank or CoHITS. In other words, BGRM’s weak collinearity with degree increases the

extent to which BGRM improves model fit relative to BiRank and CoHITS but limits its ability

to directly proxy patient prescription drug-seeking behavior.

Effectiveness of incorporating edge weights

Finally, we demonstrate the effectiveness of incorporating meaningful edge weights into the

bipartite centrality indices. We calculate the AIC values of our baseline models and models

with centrality indices estimated on the MME-weighted network. The results in Fig 5 show

that models with BiRank and CoHITS centrality indices on MME-weighted network resulted

in lower AIC values than their unweighted counterparts. Even though MME-weights appear

to substantially improve HITS’ raw association with opioid overdose (see Fig 4), the HITS

model with MME-weights does not gain any improvement in fit, implying that MME-weights

do not increase HITS’ ability to provide unique structural information about the network.

Also, surprisingly, BGRM performs worse on the MME-weighted network than BGRM per-

formed on the unweighted network.

To ensure that the improvement in centrality measures with MME-weighted edges is not

simply a result of MME’s own direct association with the quantity of drugs consumed, we also

estimate models that included MME as a covariate. These results are very similar to those dis-

played in Fig 5.

Robustness analysis

To demonstrate that the findings above can generalize to different scenarios, we perform addi-

tional robustness analysis. We focus on the same geographical area but extract the data from

2012 quarter 3 to 2015 quarter 2. We run the same Cox proportional hazard models as before

on this new dataset. The hazard ratios are reported in S2 Table; the model fit comparison is

shown in S1 Fig. The results in them are qualitatively consistent with those in Table 1 and Fig

5, confirming the robustness of the findings.

PLOS ONE Comparing measures of centrality in bipartite patient-prescriber networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0273569 August 30, 2022 15 / 22

https://doi.org/10.1371/journal.pone.0273569


Discussion

In this study, we examine a patient-provider network defined by opioid prescriptions and

compare how different centrality algorithms capture prescription drug-seeking behavior and

predict subsequent opioid overdose. As shown in previous studies, network centrality better

reflect the position of patients within the entire social structure of the patient-provider net-

work than individual-level proxies of patient behavior, like degree and transitivity [17,21].

However, we argue that the extent to which any centrality index represents true prescription

drug-seeking behavior is based on the extent to which the index reflects drug seekers’ behavior

patterns. These patterns include the patients’ tendency to seek opioids from multiple providers

simultaneously, to recommend and cluster around the same set of opioid providers, and to

seek providers that prescribe higher quantities of potent opioids.

Although applying PageRank to the one-mode projected network is a common method for

estimating node prominence in bipartite social networks and has been used previously for

identifying opioid doctor shoppers [17,21], the comparison here reveals that some variants of

a bipartite centrality index can better predict subsequent opioid overdose. Our analysis sug-

gests that PageRank’s higher collinearity with the other model terms (in particular, transitive

ties) makes it better at reflecting patients’ tendency to seek opioids from well-connected pro-

viders of opioid analgesics but worse at capturing patients’ preferences to seek opioids from

many providers simultaneously. This shortcoming can be critical in the context of nonmedical

prescription opioid use because a tendency to receive opioids from multiple providers

Fig 5. Model fit by rank parameter and MME-weighted edges. Dark points indicate parameter estimates that are statistically significant at p< 0.01. All

parameter estimates have positive coefficients. Models control for age, gender (female), patient degree (number of providers), transitive ties, HEPC, HIV,

cancer, psychological disorders, palliative care, and MAT use.

https://doi.org/10.1371/journal.pone.0273569.g005
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simultaneously is the key characteristic of drug-seeking behavior according to the literature. In

addition, it is non-trivial to incorporate the drug potency (MME) information into the PageR-

ank estimates, limiting PageRank’s ability to capture the patients’ tendency to visit providers

that prescribe high quantities of opioids.

By contrast, bipartite centrality indices CoHITS and BiRank yield better performance in

predicting subsequent overdose events since they can better process the bipartite topology

without introducing too much distortion and handle the outliers through proper normaliza-

tion. Moreover, the bipartite centrality indices allow weighting patient edges by the potency of

opioids (MME) and our analysis show that this enhancement further improves the perfor-

mance of CoHITS and BiRank. This finding illustrates the advantages of weighting bipartite

networks by relevant edge traits.

Not all bipartite centrality indices consistently perform better than PageRank in our analy-

ses. For example, HITS performs worse than the other indices in predicting subsequent opioid

overdose. As others suggested, the lack of a proper normalization scheme makes HITS suscep-

tible to outliers [38,48], which may further lead to its weak performance. While the direct asso-

ciation between HITS and overdose appears to improve on the MME-weighted network

(though the MME-weighted network has even more degree outliers), HITS’ increased associa-

tion with opioid overdose is entirely mediated by other network controls, suggesting that

HITS is still unable to pick up any distinctive structural information about the network. Put

together, this suggests that despite its ability to reflect the bipartite topology of the patient-pro-

vider network, HITS is still a poor alternative to PageRank in this context.

BGRM shows mixed patterns: it predicts overdose better than PageRank and CoHITS with

the unweighted patient-provider network in regression models while its direct association

with opioid overdose is much weaker. Descriptive statistics and supplementary analyses sug-

gest that BGRM’s advantage over CoHITS relies on the presence of controls for patient degree

and transitive ties. We consider BGRM’s reliance on covariates to be a clear disadvantage in

comparison to BiRank and CoHITS. More troubling, BGRM with MME-weighted edges per-

form worse than BGRM without MME-weights. This implies that BGRM’s normalization

scheme prevents it from tracking onto patients’ preferences for providers of potent opioids.

BGRM also has a negative correlation with transitive ties. Together, these patterns imply that

BGRM tracks onto patients’ tendency to seek multiple providers simultaneously and to cluster

around the same sets of opioid providers; however, BGRM does not appear to reflect prefer-

ences for high-quantity opioid providers.

Our analysis has some limitations. First, we do not know which patients truly engage in

drug-seeking behavior. Instead, we use subsequent opioid overdose as a proxy. Although this

methodology adheres with prior convention [17,21], it allows room for our estimates to be

biased by network features that are related to opioid overdose but are not related to patient

drug-seeking behavior. Second, it is unclear whether our estimates of prescription drug-seek-

ing behavior are biased by missing information. Our medical claims database does not contain

all patients within our region of analysis. However, centrality indices tend to be robust to miss-

ing information [63,64]. Third, our analysis does not explicitly account for other factors such

as the geographical location of the patients and prescribers. Given that high-risk patients and

prescribers tend to form geographic clusters, properly incorporating these factors into the

framework could potentially improve the prediction power of the centrality measures.

When it comes to choosing the most appropriate centrality index, our finding may not gen-

eralize to other contexts. PageRank’s bias toward nodes with high-degree alters has some clear

disadvantages for measuring drug-seeking in patient-provider networks, but it might not be

problematic for scenarios where the structure of the network has a clearer hierarchy, a more

core-periphery structure, or where node out-degree is not necessarily expected to be related to
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node prominence. Similarly, HITS and BGRM might be more suitable for other cases not con-

sidered here.

Conclusion

This article compares various measures of node prominence in patient-provider networks to

identify potential prescription drug-seeking behavior for nonmedical use. Our evidence sug-

gests that some bipartite centrality indices may be excellent alternatives to PageRank in esti-

mating node prominence in bipartite networks due to their capability of holistically capturing

the bipartite topology and their flexibility to incorporate non-network traits to capture differ-

ent aspects of the underlying social processes. Identifying individuals who are at risk of future

opioid overdose is critical to population health in the U.S. We hope that these methods might

be implemented to guide future prescription drug monitoring programs to reduce overdose

mortality and improve access to addiction services.

Although we only provide one case study, we believe that bipartite centrality indices have

demonstrated substantial advantages and will serve as useful tools for other insurance claims

or electronic health records mining tasks such as identifying drug-seekers of other controlled

substance and detecting insurance fraud and abuse [12,20,22,65] as well as for analyzing other

bipartite networks such as power grids [66]. Our analysis shows that estimating centrality

directly on bipartite networks offers theoretical advantages over applying traditional centrality

measures like PageRank to one mode network projections. The variants of bipartite centrality

index focus on different aspects of the network structure, allowing enough room for one to

find an appropriate index for networks where node prominence is manifested differently. The

analytic procedures and the explanation of how each centrality index works presented in this

paper can aid the readers to experiment bipartite centrality indices in their studies. Finally,

these indices are relatively easy to implement and deploy with modern statistical packages

[62].
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