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Abstract

We investigate the predictability of successful memes using
their early spreading patterns in the underlying social net-
works. We propose and analyze a comprehensive set of fea-
tures and develop an accurate model to predict future popu-
larity of a meme given its early spreading patterns. Our pa-
per provides the first comprehensive comparison of existing
predictive frameworks. We categorize our features into three
groups: influence of early adopters, community concentra-
tion, and characteristics of adoption time series. We find that
features based on community structure are the most powerful
predictors of future success. We also find that early popular-
ity of a meme is not a good predictor of its future popularity,
contrary to common belief. Our methods outperform other
approaches, particularly in the task of detecting very popular
or unpopular memes.

Introduction
A meme is a piece of information that replicates among
people (Dawkins 1989). Memes bear similarities to infec-
tious diseases, as both travel through social ties from one
person to another (Daley and Kendall 1964; Goffman and
Newill 1964). The wide adoption of online social networks
not only makes Internet memes possible, but also provides
us with valuable data on the spreading of memes and user
behavior (Vespignani 2009; Lazer et al. 2009). Although nu-
merous memes are created everyday, only a few go viral,
prompting a question that has attracted attention across dis-
ciplines including marketing, advertisement, and social me-
dia analytics, as well as machine learning and network sci-
ence: can we predict successful memes at their early stage?

What makes a meme viral? First, a meme may become
viral simply because the meme appeals to many (Berger and
Milkman 2009; Cataldi, Caro, and Schifanella 2010). At the
same time, given the competition between memes and social
influence, innate appeal alone may not be able to paint the
whole picture (Salganik, Dodds, and Watts 2006; Kitsak et
al. 2010; Yang, Sun, and Mei 2012). The success of a meme
also depends on timing, network structure, randomness, and
many other factors (Centola 2010; Weng et al. 2012; Pinto,
Almeida, and Gonçalves 2013).
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We identify two major approaches to meme virality pre-
diction: time series analysis and feature-based classifica-
tion. Time series analyses focus on the patterns of early
popularity fluctuation of a meme, assuming that the pat-
terns of a meme’s growth and decay tell us whether it
will go viral in the future (Jamali and Rangwala 2009;
Asur et al. 2011; Yang and Leskovec 2011). Classifica-
tion approaches commonly aim to discover distinguishing
features of successful memes by applying supervised ma-
chine learning techinques with labled datasets. A variety
of features have been proposed and tested to differenti-
ate viral memes from others; examples include comments,
votes, and user-defined groups (Lerman and Hogg 2010;
Jamali and Rangwala 2009; Suh et al. 2010; Hong, Dan, and
Davison 2011; Yang, Sun, and Mei 2012). However, most
studies have paid little attention to the role of the under-
lying network structure (Romero, Tan, and Ugander 2013;
Ma, Sun, and Cong 2013) even though it is natural to expect
network topology to affect information diffusion, as memes
spread through social ties.

Here we demonstrate that features based on network
structure, particularly communities—defined as densely
connected clusters of people (Fortunato 2010)—provide cru-
cial insights into virality. We offer the first comprehensive
comparative analysis of three categories of features: The first
category includes features that capture the audience size. As
many studies on social influence have assumed, the neigh-
bors of an individual in the network can be considered as
their potential audience (Kitsak et al. 2010; Cha et al. 2010;
Suh et al. 2010; Bakshy et al. 2011). For example, one of the
common beliefs is that star users with lots of followers are
more influential than others with fewer followers. Second,
we examine the predictive power of community structure, as
it was shown that the spreading pattern of a meme across
communities reveals the general appeal of the meme (Weng,
Menczer, and Ahn 2013). Finally, we take into account the
speed of growth in early meme adoption.

By comparing with multiple representative prediction
models, we show that our model can accurately predict the
popularity of memes (to an order of magnitude) two months
in advance, with knowledge of only a small number of early
tweets. Our model outperforms random guessing, majority
guessing, and three regression models that use early popu-
larity or expected influence of early adopters.
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Background
The virality of memes has been examined from various per-
spectives, including their innate attractiveness and the role
of influentials along with their adoption patterns.

The innate appeal of a meme is commonly believed to
contribute to its virality. Berger and Milkman (2009) stud-
ied emotion hidden in the content of news articles and found
that, for instance, articles that evoke arousal are more vi-
ral. Guerini, Strapparava, and Özbal (2011) characterized
various aspects that indicate the virality of text-based con-
tent, based on the assumption that virality is an intrinsic
trait of content. Tsur and Rappoport (2012) analyzed a rich
set of content-based features extracted from hashtags, such
as the number of words contained, spelling, lexical items,
location in tweets, emotional and cognitive dimensions, in
order to predict future popularity of the hashtags. Yet, ran-
domized experiments on music choices and social news fil-
tering suggested that innate quality may play only a minor
role in determining future popularity due to the strong ef-
fect of social influence (Salganik, Dodds, and Watts 2006;
Muchnik, Aral, and Taylor 2013).

User behaviors and characteristics are other important
aspects. Limited individual attention causes competition
among memes, inducing strong heterogeneity in meme pop-
ularity and longevity (Weng et al. 2012). Each user has
different interests affecting adoption preference and meme
popularity (Yang, Sun, and Mei 2012). Many methods
for quantifying user influence and identifying influential
users—influentials—have been proposed. User influence is
often quantified in terms of high degree or retweetabil-
ity (Cha et al. 2010; Suh et al. 2010), topical similarity (Tang
et al. 2009; Weng et al. 2010), information forwarding ac-
tivity (Romero et al. 2011; Suh et al. 2010), or size of cas-
cades (Kitsak et al. 2010; Bakshy et al. 2011). Here we eval-
uate our model against a baseline built upon social influence.

The structure of the underlying networks has been shown
to have a significant impact on the spreading process in gen-
eral (Daley and Kendall 1964; Goffman and Newill 1964;
Barrat, Barthélemy, and Vespignani 2008; Pastor-Satorras
and Vespignani 2001) and vice versa (Weng et al. 2013).
The existence of hubs—nodes with lots of neighbors—is
known to affect the persistence of infections, the distribution
of cascade sizes, and the vulnerability of the system (Pastor-
Satorras and Vespignani 2001; Watts 2002). Other impor-
tant network structures present in most real networks are
dense subgraphs called communities (Newman 2006; Ros-
vall and Bergstrom 2008; Ahn, Bagrow, and Lehmann 2010;
Fortunato 2010). Communities are believed to constrain in-
formation flow or the spreading of diseases (Granovetter
1973; Onnela et al. 2007; Rosvall and Bergstrom 2008;
Colbaugh and Glass 2012; Weng, Menczer, and Ahn 2013).

The spread of memes is often considered as social con-
tagion, commonly defined as the spread of information or
behavior on social networks where an individual serves as
the stimulus for the imitative actions of another (Lindzey
and Aronson 1985; Goffman and Newill 1964; Daley and
Kendall 1964). However, studies have shown that infor-
mation contagion may spread differently from diseases, as
multiple exposures can significantly increase the chances

of adoption (Granovetter 1978; Centola 2010; Romero,
Meeder, and Kleinberg 2011). The speed and ease of meme
transmission is affected by characteristics of social ties.
Strong and homophilous ties are often seen as more effective
than weak ties for spreading messages (Brown and Reingen
1987), while weak ties are expected to transmit novel infor-
mation (Granovetter 1973). In viral marketing and consumer
studies, researchers actively apply network approaches to
analyze and model local and global structural patterns of
social networks (Leskovec, Adamic, and Huberman 2007;
Mason, Jones, and Goldstone 2008; Aral and Walker 2011).

One of the common approaches to detect viral memes
is time series analysis, which examines temporal patterns
such as growth, bursts, and decay (Wu and Huberman 2007;
Romero, Meeder, and Kleinberg 2011; Asur et al. 2011). A
common finding is that temporal patterns of memes can be
well summarized into a few categories, and they have pre-
dictive power to spot trendy or bursty memes (Yang and
Leskovec 2011; Lehmann et al. 2012). Classification of tem-
poral patterns can be seen as an extended application of tra-
jectory clustering (Gaffney and Smyth 1999; Lee, Han, and
Whang 2007). Existing virality prediction algorithms try to
forecast time series based on past values (McNames 1998;
Lenser and Veloso 2005; Kaltenbrunner, Gomez, and Lopez
2007). Some event detection methods group memes together
to form topics and use temporal activity to detect trending
topics (Becker, Naaman, and Gravano 2011; Cataldi, Caro,
and Schifanella 2010).

In another approach, the prediction problem is treated
as a classification task. Multiple studies have claimed that
the early popularity of online content is strongly corre-
lated with its future popularity (Jamali and Rangwala 2009;
Szabo and Huberman 2010; Lerman and Hogg 2010). Szabo
and Huberman (2010) proposed a model that predicts fu-
ture popularity based on early popularity. Jamali and Rang-
wala (2009) used daily user activities, user interest peak, and
comment information attached to each Digg story to esti-
mate future usage. Design elements of a website are shown
to be informative as well; Lerman and Hogg (2010) found
that incorporating design features of the website can im-
prove the outcomes of their stochastic prediction model. The
numbers of URLs and hashtags in a tweet are suggested to
be strongly correlated with its retweetability, while the num-
ber of followers, followees, and the account age have a weak
effect (Suh et al. 2010). Yang, Sun, and Mei (2012) quan-
tified how a user selects content tags using individual in-
terests, relevance, and behavior of neighbors; however, the
features are proposed for predicting whether a single user
will adopt a given hashtag, not applicable for foretelling the
future popularity of hashtags. Some other notable features
include content properties such as terms, language, seman-
tics, and category (Tsur and Rappoport 2012), user influ-
ence (Bakshy et al. 2011; Salganik, Dodds, and Watts 2006),
source authority (Bandari, Asur, and Huberman 2012), and
the graph topology of early adopters (Romero, Tan, and
Ugander 2013; Ma, Sun, and Cong 2013). In a recent paper,
Cheng et al. (2014) formulated social virality prediction as a
sequence of binary classification problems, while a cascade
is tracked over time. In spite of the different problem formu-
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Table 1: Basic statistics of the reciprocal follower network in
the study. Node coverage measures the proportion of nodes
belonging to communities that have at least three nodes.

#Nodes 400,020
#Edges 10,012,989
Clustering coefficient 0.2093

InfoMap #Communities 6,569
Node coverage 99.08%

LinkClustering #Communities 193,805
Node coverage 43.30%

lation, our results seem to be consistent with their finding
that initially, breadth is a strong indicator of larger cascades.

Dataset
Here we harnessed a dataset from Twitter, one of the most
popular micro-blogging platforms, where users post short
posts called tweets. Twitter provides a great opportunity to
study the spread of memes because (i) it is one of the main
platforms where internet memes are generated and shared,
and (ii) it supplies network structure, content of messages,
spreading events, and ways to define memes concretely. Be-
tween a pair of users (u, v), we consider three main types of
interactions: (i) u can follow v to subscribe to v’s activities
(tweets, retweets, etc.); (ii) u can retweet v’s messages to re-
broadcast it to u’s followers, commonly noted as “RT” for
short; (iii) u can mention v’s screen name in tweets by using
the “@” symbol (e.g. ‘@yy’). Users can also explicitly at-
tach indexable topic identifiers to a tweet by using hashtags,
topical terms with the “#” symbol as a prefix (e.g. ‘#news’).

We consider each hashtag as a meme, as we can con-
cretely identify and track hashtags, and as properties of
hashtags accord with the definition of meme (Dawkins
1989); most hashtags are unique phrases that spread by im-
itation. Moreover, they mutate, compete, and survive; Twit-
ter users quickly reach consensus on representative hash-
tags for certain topics. For instance, #ows quickly be-
came the hashtag of the Occupy Wall Street movement—
outcompeting similar ones—among hundreds of thousands
of people who participated in public discourse around the
movement (Conover et al. 2013).

By using the Twitter Streaming API and the ‘GET follow-
ers’ method of the Twitter REST API, we collected tweets
during March and April of 2012 and reconstructed a relevant
portion of the follower network. We only kept reciprocal fol-
low links, as bi-directional communication reflects more sta-
ble and reliable social connections. Although we expect that
incorporating the direction of connections may improve our
results even more, we stick with bi-directional links for the
sake of simplicity and generality. Non-English users were
filtered out to avoid any artifact from the large-scale segre-
gation between language groups.

We identified communities on the resulting network by
using two algorithms: InfoMap (Rosvall and Bergstrom
2008) and LinkClustering (Ahn, Bagrow, and Lehmann
2010), to demonstrate the robustness of our experiments

against specific choices of community detection methods.
We have chosen these methods primarily because of their
performance, and partly because they are based on con-
trasting principles, in order to confirm the robustness of
the results; InfoMap detects disjoint communities while
LinkClustering identifies overlapping communities. In our
analysis we ignore communities with fewer than three
nodes. Basic statistics of the network and communities are
displayed in Table 1.

Definitions

Let us first define key concepts and mathematical notations
to facilitate the subsequent discussion.
Definition 1. Meme and meme popularity: We consider
each hashtag h as a meme. T (h) is a set of all tweets that
contain h and Tn(h) is a set of the earliest n tweets that
contain h. Thus Tn(h) ⊆ T (h) and n = |Tn(h)| ≤ |T (h)|.
Similar definitions can be made for adopters. A(h) is a set
of all adopters who tweeted about h and An(h) ⊆ A(h)
is a set of early adopters who tweeted at least one of the
first n tweets. The popularity of meme h is quantified by the
number of tweets, |T (h)|, or adopters, |A(h)|.
Definition 2. Network surface: The neighbors of a given
set of users U (not counting U ) are deemed to be U ’s
surface S(U). The definition of the surface can be ex-
tended recursively to the k-th surface, which contains users
within k steps from any user in the target set U , Sk(U) =
S(Sk−1(U)) ∪ Sk−1(U), and S1(U) = S(U).
Definition 3. Adopter sequences and time series: For a
given meme h, we consider the sequence of meme adopters,
〈ah1 , ah2 , . . . , ah|T (h)|〉, where ahi ∈ A(h) is the creator of
the i-th tweet with h. A user may appear multiple times
in the sequence if the user tweets about h more than once.
Similarly we build the tweet time series 〈th1 , th2 , . . . , th|T (h)|〉
where thi marks the timestamp (in second) of the i-th tweet
containing h. The set of tweets within time τ is labeled
T τ (h) where τ is a time duration measured starting from
the first tweet.
Definition 4. Community: A community c ∈ C is a sub-
set of nodes (users) in the network. T (h|c) and A(h|c) are
tweets and adopters of a meme h in community c, respec-
tively. We define Tn(h|c) and An(h|c), that consider only
early tweets, in a similar fashion. C(h) denotes the infected
communities of h, which generate at least one tweet contain-
ing h; C(h) = {c | c ∈ C, |T (h|c)| ≥ 1}. Similarly, the in-
fected communities with early tweets are Cn(h) = {c | c ∈
C(h), |Tn(h|c)| ≥ 1}.
Definition 5. Interactions: I(h) is the number of user in-
teractions regarding h. Two types of user interactions are
considered: retweets (RT), by which a user retweets a mes-
sage containing h from another user; and mentions (@),
by which a user mentions another in a tweet containing h.
We consider interactions within communities, I�(h), and
between communities, Iy(h), respectively, where I(h) =
I�(h) + Iy(h).
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Figure 1: Network surfaces. Red nodes represent the early
adopters of a meme; blue ones are neighbors of early
adopters; the grey color marks the surface area. (a) When
A and B adopt a meme, the corresponding network surface
is small. (b) The adoption by C and D creates a large net-
work surface. (c) Adopter H spreads the meme to node I
(a nearby node), and the potential adopters do not change
much. (d) When H spread the meme to node L (a node far-
ther away), the set of potential meme adopters grows a lot.

Characterizing Viral Memes
In this section we identify signatures of viral memes at their
early stages in terms of three characteristics: network topol-
ogy, community diversity, and growth rate. We demonstrate
that the information on early adopters, particularly in the
context of social network structure, is powerful enough to
identify young viral memes. Let us present the rationales for
the prediction features used in the model before introducing
the detailed definition of each feature in the next section.

Network Topology
The position of an adopter in the network determines the
size of the potential audience (Kitsak et al. 2010). The net-
work surface of a given set of adopters, S, captures the num-
ber of neighbors who are directly exposed. As illustrated in
Fig. 1(a-b), the network surface varies greatly depending on
the degrees and positions of the adopters. We also estimate
the growth of potential audience in time by examining the
distance between consecutive adopters in the network. Note
that new adopters are not necessarily connected to existing
adopters because a meme can be injected into multiple nodes
of the network, and because our collection is based on a sam-
ple of the entire public stream. The farther the jump between
two consecutive adopters, the more potential spreaders the
meme may have (Fig. 1(c-d)).

Community Diversity
To explain our community diversity features, let us first ex-
amine the characteristics of social contagion. Unlike epi-
demic diseases, social contagions are known to possess two
distinctive characteristics:

Social reinforcement. Until a certain point, each addi-
tional exposure drastically increases the probability of
adoption (Centola and Macy 2007; Bakshy, Karrer, and
Adamic 2009; Romero, Meeder, and Kleinberg 2011;
Centola 2010).

Homophily. Social relationships are more likely to be
formed between people who share characteristics, cap-
tured in the sayings “birds of a feather flock together” and
“similarity breeds connection” (McPherson, Lovin, and
Cook 2001; Centola 2011). Therefore, we expect to see
that connected people have similar characteristics, such
as interests, languages, or culture, increasing the chances
of adopting similar memes.

Community structure has been shown to help quantify
the strength of these effects (Colbaugh and Glass 2012;
Weng, Menczer, and Ahn 2013). First, dense connectiv-
ity inside a community increases the chances of multi-
ple exposures, thus enhancing the contagion that is sensi-
tive to social reinforcement. Second, groups with similar
tastes naturally establish more edges among them, form-
ing communities. Therefore members of the same commu-
nity are more likely to share similar interests. We thus ex-
pect that, if these two effects are strong, communities will
facilitate the internal circulation of memes while prevent-
ing diffusion across communities, causing strong concentra-
tion or low community diversity. Our previous study showed
that unpopular memes tend to be concentrated in a small
number of communities while few viral memes have high
community diversity, spreading widely across communities
like epidemic outbreaks (Weng, Menczer, and Ahn 2013).
We expect that features that quantify the community diver-
sity should help predict future meme virality. As an illus-
tration, we visualize the early diffusion patterns of a few
memes based on the first 30 tweets in Fig. 2. Viral hash-
tags such as #TheWorseFeeling and #IAdmit, ex-
hibit more community diversity than non-viral memes, e.g.
#ProperBand and #FollowFool.

Meme Growth Rate
Viral memes are expected to spread more quickly than oth-
ers (Szabo and Huberman 2010). To incorporate this intu-
ition, we define the time difference between the first and
the n-th tweet in the time series of a meme h as the early
spreading time, thn−th1 . It gauges the initial growth rate of h.
Figure 3 displays a correlation between the growth rate and
meme popularity. Although we observe fluctuations when
the early spreading time th50 − th1 is small, meme popularity
significantly decreases when the early spreading is slow.

Prediction Features
Based on our preliminary analyses above, we design features
for our prediction model. Network features describe the size
of potential audience based on the positions of early adopters
in the network. Community features measure the community
diversity at the early stage. Growth-rate features quantify the
initial momentum. We have 13 features in total, marked as
f .1–13. All the features are computed based on the first n
tweets for each hashtag, where the parameter n is a small
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(c) #ProperBand

(a) #TheWorseFeeling (b) #IAdmit

(d) #FollowFool

Figure 2: Visualizations of diffusion patterns of viral (a,b)
and non-viral (c,d) memes. The early adopters among the
first 30 tweets and their neighbors in the same communities
are shown. Each node represents a user and each link indi-
cates the reciprocal follow relationship between two users.
Adopters are colored in blue.

(a) (b)

Figure 3: The relationship between the meme popularity
measured in the number of tweets, |T (h)|, and adopters,
|A(h)|, and the early spreading time with n = 50, th50 − th1
seconds.

number compared with the final number of tweets generated
by viral hashtags.

Basic Network Features
Here we use the connectivity of users.
f .1. Number of early adopters, |An(h)|. The number of
early adopters is one of the most basic and simple features.
An(h) is the set of distinct adopters in the earliest n tweets
of a meme h. A small |An(h)| would indicate that a small
number of users generated most tweets and the hashtag is
failing to spread.
f .2. Size of first surface, |S(An(h))|. The first surface con-
tains all the uninfected neighbors of early adopters of h. It is
the set of most immediate adopter candidates (Ma, Sun, and
Cong 2013).
f .3. Size of second surface, |S2(An(h))|. The second sur-
face includes uninfected users in the second surface of early

adopters, characterizing the number of potential adopters
within two steps.

Distance Features
Here we use the position of adopters in the network.
f .4. Average step distance, dn(h). With the adopter se-
quence for the first n tweets of h, 〈ah1 , ah2 , . . . , ahn〉, we mea-
sure the shortest network path length between consecutive
users and call it step distance d(ahi , a

h
i+1), where 1 ≤ i ≤

n−1. We examine the average distance between consecutive
adopters of h in time:

dn(h) =
1

n− 1

n−1∑
i=1

d(ahi , a
h
i+1).

f .5. CV of step distances, Cv(dn(h)). The coefficient of
variation (Cv) of a variable is the ratio of its standard devia-
tion to the mean. We use it to measure the relative variability
in step distance:

Cv(dn(h)) =
1

dn(h)

√∑n−1
i=1 (d(ahi , a

h
i+1)− dn(h))2

n− 2
.

f .6. Diameter, Dn(h). The diameter is the maximum dis-
tance between any two adopters of h within the first n
tweets. It is a measure of audience coverage in the network:

Dn(h) = max
1≤i6=j≤n−1

d(ahi , a
h
j ).

Community Features
Community-based features are designed on the basis of
our previous study, showing that viral memes exhibit high
community diversity (Colbaugh and Glass 2012; Weng,
Menczer, and Ahn 2013). That study includes a scrupulous
assessment of these community-based features and a com-
parison with results produced by several synthetic diffusion
models. The features are computed at prediction time, based
on the predefined communities; the community detection al-
gorithm is executed once on the network built upon the his-
torical data, as the network structure does not evolve much
within a short time period.
f .7. Number of infected communities, |Cn(h)|. It is the
number of communities with at least one adopter of h among
first n tweets.
f .8–9. Usage and adopter entropy, HT

n (h) and HA
n (h).

The measurement of entropy describes how tweets or
adopters of a given meme are scattered or concentrated
across communities. Large entropy indicates high diversity
and low concentration:

HT
n (h) = −

∑
c∈C(h)

|Tn(h|c)|
n

log
|Tn(h|c)|

n

HA
n (h) = −

∑
c∈C(h)

|An(h|c)|
|An(h)|

log
|An(h|c)|
|An(h)|

.

f .10–11. Fraction of intra-community user interaction,
I�n (h)/In(h). The likelihood of a user adopting informa-
tion from members of the same community increases with
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the strength of the community trapping effect. We expect to
observe weaker community trapping and higher community
diversity in early adopters of viral memes. Here we quan-
tify this by measuring the fraction of intra-community user
interaction. The interactions can be retweets or mentions:

I�RT
n (h)

IRTn (h)
,

I�@
n (h)

I@n (h)
.

A high fraction of intra-community interaction suggests a
limited group of potential adopters in the future.

Growth Rate Features
Given the time series of the first n tweets of a meme h,
〈th1 , th2 , . . . , thn〉, we can measure step time duration—the
time difference between consecutive tweets, thi+1 − thi . The
mean and fluctuations of the sequence of time durations are
implemented as two prediction features.
f .12. Average step time duration, ∆tn(h):

∆tn(h) =

∑n−1
i=1 t

h
i+1 − thi

n− 1
=
thn − th1
n− 1

.

f .13. CV of step time durations, Cv(∆tn(h)):

Cv(∆tn(h)) =
1

∆tn(h)

√∑n−1
i=1 (thi+1 − thi −∆tn(h))2

n− 2
.

Experiments
In this section we predict the magnitude of a meme’s future
popularity using the features introduced above, calculated
on the basis of early observation, and compare the results
with five baselines.

Task Definition
We define the popularity (virality) of a meme h as the num-
ber of tweets |T (h)| or adopters |A(h)|. We use both defini-
tions, as they highlight different perspectives of a meme: the
former characterizes the amount of discussion a meme trig-
gers; the latter tells us about the size of the crowd participat-
ing in the discussion. Large T (h) does not necessarily im-
plies large A(h), because a single user may generate many
tweets. Meme popularity exhibits a broad and skewed distri-
bution, as observed in many previous studies (Lerman and
Ghosh 2010; Weng et al. 2012). We partition all the memes
into classes based on the order of magnitude of the total pop-
ularity (dlog10 |T |+ 0.5e or dlog10 |A|+ 0.5e). The predic-
tion task is therefore a multi-label classification. Given the
information about the early stage of a hashtag, the task is to
predict which class it belongs to after about two months, at
the end of the observation period of our dataset.

Baselines
We evaluate our prediction results by comparing them with
five baseline prediction models: B1 and B2 are trivial base-
lines;B3,B4, andB5 are regression models that use features
such as social influence of adopters, cumulative popularity,
and the growth sequence of memes. Note that content-based
prediction models, such as the model proposed by Tsur and

Rappoport (2012), are not considered as we focus on the
prediction problem using only network spreading patterns,
without looking into the content.

1. Random guess (B1): Assuming that we know the exact
number of memes in each class, B1 randomly assign the
class label to each meme with the prior probability.

2. Majority guess (B2): Due to the imbalanced distribution
of meme popularity, simply assigning the dominant class
label to every meme yields high accuracy. Note that, how-
ever, B2 fails to capture the most important but not domi-
nant class—the most viral memes. This simple but ‘pow-
erful’ baseline has been ignored in most existing studies.

3. Social influence model (B3): This is built on the common
notion that influential users play a key role in the wide
adoption of a meme (Kitsak et al. 2010; Cha et al. 2010;
Suh et al. 2010; Bakshy et al. 2011). We calculate each
user’s PageRank score (Brin and Page 1998) and num-
ber of followers, which approximately captures the im-
portance of the user in the network and the size of po-
tential viewers of his content, respectively. According to
the social-influence perspective, if a meme is reposted by
more influential people at the early stage, it is more likely
to go viral. For each given meme, we therefore compute
the maximum, mean, median, and coefficient of variation
among PageRank scores of its n early adopters; a feature
set is built similarly for the follower count, but on a loga-
rithmic scale. We then apply multivariate linear regression
using these eight features as one of the baseline models.

4. LN model (B4): Szabo and Huberman (2010) proposed
a linear regression (LN) model that uses the logarithm of
the early popularity of a meme at time τ , |T τ |, to predict
its popularity in the future, |T |. Given that we use param-
eter values n = 25, 50, 100, here we set τ = 7 days, as it
takes, on average, at most 7 days on average to obtain the
numbers of tweets required (see Fig. 4).

5. ML model (B5): The multivariate linear (ML) model,
built upon Szabo and Huberman’s linear regres-
sion model, was proposed by Pinto, Almeida, and
Gonçalves (2013). Instead of using the cumulative popu-
larity reached by a meme on a given day, the model takes
the popularity measured on each day up to time τ to form
a vector as the predictor for the future popularity. We set
τ = 7 as in B4.

Network-based Prediction Model (Pn)
Since we focus on identifying the predictive features, we
choose one of the most widely adopted methods—the ran-
dom forest algorithm—that has been shown to be robust and
reliable (Breiman 2001). We construct 300 decision trees,
each with 5 random features from those introduced earlier.
Our prediction model Pn uses the features computed with
the first n tweets of each meme. Note that hashtags with
fewer than n tweets are not considered in the calculation.
We experiment with multiple values of n; the corresponding
number of memes in each class is listed in Table 2.

To ensure that we examine only new memes, we only in-
clude the hashtags that were used during the first two weeks
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Figure 4: The average number of tweets for memes with a given minimum n as a function of time since creation. The dashed
lines mark where memes get n tweets. We consider (a) n = 25, (b) n = 50, and (c) n = 100.

Table 2: The number of ‘new’ hashtags in each class with
different n values. Note that only 48 memes in the dataset
reach the order of 104 tweets and only 33 memes reach the
order of 104 adopters.

n
dlog |T |+ 0.5e dlog |A|+ 0.5e
1 2 3 ≥4 0 1 2 3 ≥4

25 2,853 6,227 224 48 157 5,202 3,810 149 33
50 - 2,761 224 48 21 723 2,106 149 33

100 - 676 224 48 4 118 643 149 33

of Mar 2012 and appeared in less than X tweets during the
previous month (Feb 2012); we set X = 20 for our method
as well as the baselines. Our previous study reported that
at least the community-based prediction is insensitive to the
choice of X (Weng, Menczer, and Ahn 2013).

Evaluation with F1 Score

Simply computing the accuracy, the percentage of correctly
predicted items among all the items, is not good enough
for evaluation in our prediction task, because the classes in
our task are imbalanced (see Table 2). When class sizes are
skewed, a high accuracy does not necessarily indicate good
performance. Overlooking small classes, as done by the ma-
jority guess baseline B2, can yield good accuracy if one or a
few dominant classes are over-represented in the dataset.

Instead, we measure both precision and recall for each
class to demonstrate the model performance for predict-
ing viral and non-viral memes separately. Precision quanti-
fies how many predicted items for the target class are cor-
rect in the empirical data; recall measures how many ac-
tual items in the target class are captured by the model.
Precision and recall are combined by the harmonic mean
F1 = 2 · precision · recall/(precision + recall), between 0
(worst) and 1 (best). F1 scores of different models for pre-
dicting the future usage or adopter popularity are displayed
in Fig. 5. For both Pn and all baselines, we employ 10-fold
cross validation. To quantify and compare how each set of
features in Pn performs, we also run the models with only
basic features (f.1-3), distance features (f.4-6), community-
based features (f.7-11), and timing features (f.12-13).

Results

All models, including the two trivial baselines (B1 and B2),
achieve good results for dominant classes (dlog |T |+0.5e =
2 or dlog |A| + 0.5e = 2), due to the imbalanced class
sizes. Note that B2 can only achieve non-zero F1 score in
the dominant class. Regression models (B3, B4, and B5)
in general have similar performance. We find that the LN
baseline model does not work well for the most viral hash-
tags, because the popularity at the early stage does not guar-
antee future popularity, in contrast to the common premise
of many studies. The correlation between the early pop-
ularity |T τ | and the final popularity |T |, as illustrated in
Fig. 6(a), is weak. This suggests that many initially un-
popular hashtags eventually become popular later (cf. up-
per left quadrant in Fig. 6(a)). It should be noted that the
LN model was originally designed for predicting the pop-
ularity of a single piece of online content, such as a Digg
story, a YouTube video, or a single tweet, which tends to
have swift growth and decay within a shorter lifetime. By
contrast, hashtag usage seems to be affected more by long-
term endogenous diffusion processes on the network. For
instance, in Fig. 6(b), the hashtag #FavFemaleSinger
had fewer tweets than #InvisibleChildren during the
first 2 weeks, but it continued to grow and eventually be-
came more popular than #InvisibleChildren, while
#InvisibleChildren obtained new tweets slowly af-
ter the early burst. The LN model may work better for fore-
telling the future popularity (number of retweets) of a sin-
gle tweet, but not for hashtags. The ML baseline (B5) cap-
tures more viral memes compared to the other two regres-
sion models. The richer description of early growth patterns
contained in a meme’s daily usage vector yields improved
prediction quality.

Our network-based approach outperforms the five base-
lines in most cases, especially for the most viral hashtags
(dlog |T | + 0.5e ≥ 4 or dlog |A| + 0.5e ≥ 4) or hashtags
with a small number of adopters (dlog |A|+ 0.5e ≤ 1) when
all other baseline models fail to correctly classify any in-
stances. Basic network features are weak for viral memes,
but good enough for dominant classes. Timing-based fea-
tures work better for estimating future usage while distance-
based features are more helpful for predicting the number
of adopters. Community-based features yield the best re-
sults in general, particularly when detecting the classes of
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Figure 5: F1 scores of the prediction models: (a) dlog |T |+
0.5e = 1, 2, 3, 4 and (b) dlog |A| + 0.5e = 0, 1, 2, 3, 4. The
observation window is set to n = 25, 50, 100 tweets, respec-
tively. Here we only demonstrate the results using the In-
fomap community detection method; link clustering yields
similar results.

(a)

#FavFemaleSinger
#InvisibleChildren

(b)

Figure 6: (a) Scatter plot of early popularity T τ versus T for
each meme; the black dashed line is the regression line by
the LN model. (b) Cumulative popularity for two hashtags,
#FavFemaleSinger and #InvisibleChildren.

very popular memes. By combining all the features together,
Pn provides the best overall results. The network-based ap-
proach outperforms all baselines in detecting rare events—
extremely popular and extremely unpopular hashtags.

Conclusion
In summary, we investigated the problem of predicting the
future popularity of a meme with three intuitive classes of
features. First, the positions of early adopters in the network
provide information on the size of potential audience groups,
which may affect the future popularity. Second, community
diversity is a good predictor of virality, consistently with
prior findings that viral memes are less affected by commu-
nity structure (Weng, Menczer, and Ahn 2013). Finally, the
early growth rate of a meme usage can be extrapolated to
predict its future popularity, although the predictive power
is not as strong as that of other features.

We have designed prediction features based on these intu-
itions and analyses, and tested them with machine learning
techniques. The evaluation was executed against two sim-
ple baselines, as well as three more sophisticated regression
models using early popularity (LN and ML models) or so-
cial influence of early adopters (social influence model). The
LN model has been shown to be a powerful predictor for in-
ferring the future popularity of a single item, such as a tweet
or a YouTube video, but does not perform well in predicting
the popularity of hashtags. The ML model provides better
results than the LN baseline by incorporating early popu-
larity growth patterns. The social influence model is able to
achieve better performance than the LN model with knowl-
edge of network structure and topological location of each
early adopter. However, none of the three regression mod-
els is capable of capturing the most popular memes nor the
most unpopular ones. Our prediction model outperforms all
baselines in most cases, especially when predicting memes
in the crucial minority classes. The performance is robust
across different community detection methods.

Community-based features perform the best among the
three classes. Predicting the number of meme adopters is a
more difficult task, but our network-based approach outper-
forms other baseline models, especially in predicting memes
with few adopters. The performance increases with longer
observation windows.
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The influence model and features of basic network topol-
ogy, distance, and community structure require knowledge
about the network and the positions of early adopters, while
the LN model, ML model, and timing features need the
timestamps of early messages containing the meme. De-
pending on what type of information is available, one might
choose different approaches.

The ability to predict whether a meme can go viral by just
observing a few early messages provides us with many po-
tential applications in social media analytics, marketing, and
advertisement. This study offers not only novel, powerful
features but also the first comprehensive analysis comparing
multiple approaches for early prediction of viral memes.
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