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Response Network Emerging from Simple Perturbation
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In complex networks, an attack on a single node can drastically change the communication
pattern between other nodes. To investigate this effect, we measure the betweenness centrality (BC)
changes after single node removal. Then we construct a corresponding secondary network based
on this response characteristic of the network under perturbation. We find that the changes of BC
are proportional to the BC of a removed node. We use a minimal spanning tree and a percolation
cluster method for network construction and find that the degree distribution of secondary networks

follows a power-law distribution in both cases.
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I. INTRODUCTION

In 1959, Hungarian mathematician Paul Erdos and his
collaborator Rényi proposed a random graph model to
describe several networks in nature. This was an out-
standing achievement in graph theory and served as a
standard model of various networks for a while. By the
1990s, the performance of computers had become more
efficient than in the 1960s and scientists started to exam-
ine complicated networks more precisely with this com-
puting power, and found many interesting features of
complex networks, such as degree distribution, cluster-
ing coefficient, centrality, etc. They realized that the de-
gree distribution of a real network was not the same as
that of a random network. It turns out that the degree
distribution of some real networks follows a power-law
distribution, not a Poisson distribution as expected from
the Erdos and Rényi model. To explain this discrepancy,
in 1999 a new model was proposed by Barabasi and Al-
bert [1], called the scale-free (SF) model because it has
a correct power-law degree distribution. After that, it
was reported that various real-world networks - Inter-
net, WWW, e-mail network [2,3], collaboration network
[4-T7], protein network, metabolic network [8], etc. - also
had the same scale-free structure. (For more informa-
tion, see [9,10])

In biology, the microarray technique enables us to col-
lect large amounts of genetic data at once. Experimen-
tal data from a microarray contain the automated re-
sult of each gene’s response to specific experiment. More
precisely, microarray data contain each gene’s relative
change in its expression level under specific experimen-
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tal conditions. Common experiments include changes
in temperature, pH and, most importantly, single gene
knock-out. We all know that the genes are correlated in
the sense that some of them are closely related through
some biological network (such as gene regulation) and
some are not. From these microarray data, we can de-
fine the correlation between two genes by measuring sim-
ilarity /dissimilarity of their expression level during the
experiment. Based on these correlations, we can build
a gene-gene interaction network by connecting most cor-
related genes together, which might represent the un-
derlying biological network of a specific organism. This
network might not be a real/physical network; however,
it certainly has a biological significance. Like building
this genetic network from microarray data, the response
of the original network under perturbation can be used
to construct a secondary network which may be differ-
ent from the original network. The perturbation, for
example single node deletion from the network, can be
understood as a gene deletion experiment in the microar-
ray data. In this sense, we can easily imagine that the
secondary network will represent the primary network as
the genetic network represents the biological network.
However, the dynamic response of the scale-free net-
work under perturbation has not yet been investigated
extensively. Albert et al. showed in their paper that
a scale-free network is more tolerant toward random
removal of nodes than a random network [11]. Re-
cently, Kim et al. measured the characteristic path
length (CPL) - average distance between two nodes in
the network - changes in a scale-free network under a
node removal and found that they followed a power-law
distribution [12]. These studies suggest that the scale-
free network has its own characteristic structure, which
shows non-trivial behavior, quite different from the ran-
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dom network when there is a perturbation.

Most networks are not static objects, but dynamic ob-
jects in the sense that they grow in time, and even change
their structure as well. Even though investigation of this
evolution of a network structure is a challenging and in-
teresting problem, in this paper we will consider the sim-
plest dynamic procedure of structural changes of a net-
work, a node removal. In 1977 the sociologist Freeman
defined the quantity called betweenness centrality (BC)
[13] to measure the importance of a node in network com-
munication. BC of a node represents the average amount
of traffic passing through that node. Precisely, the node
BC is defined as

ko
b(k) = D bim(h) = 3 7= M)

In Eq. (1), gi—; is the number of geodesic paths from 4
to j and gz’z:j is the number of paths from i to j that pass
through k. In this definition, we assume that all pairs
of nodes communicate once with each other through the
shortest geodesic path. This is not always possible be-
cause, to find the shortest path, we have to know the
whole network structure in advance. However, it was
found that this assumption was quite reasonable up to
some practical level [14]. If we imagine everyday com-
munication like a phone call over a phone line or send-
ing/receiving email via Internet, it is obvious that node
BC corresponds to the traffic burdens or loads which
must be endured by a node on the network to maintain
the communication between nodes [15]. The most impor-
tant property of BC that is quite different from the de-
gree is that it carries global information on the network.
The degree contains the connectivity information of the
node with its neighborhood, which is local information.
On the other hand, the BC contains global information,
because we calculate the BC of a node by summing the
local information over the whole network. Therefore, the
BC has been considered as a good measure for scale-free
network classification [16].

II. METHOD

The BC is a computationally involved network mea-
sure. The original algorithm computing BC based on
definition Eq. (1) can deal with networks of up to sev-
eral hundred nodes. However, with the increasing avail-
ability of electronic data collection and, of course, the
advent of the web, there is an increasing demand for
computation of BC on networks with a large number of
nodes. As a remedy, a new algorithm for betweenness
has been proposed by Ulrik Brandes [17,18]. It ex-
ploits the extreme sparseness typical of real networks; it
runs considerably faster and consumes much less mem-
ory. In technical terms, the running time is reduced from
O(MN?) to O(N? + NM) and memory consumption is

reduced from O(N?) to O(N + M), where N is the num-
ber of nodes and M the number of edges. Moreover, this
algorithm can compute other shortest-path-based mea-
sures, such as closeness, simultaneously within the same
bounds. This algorithm significantly extends the size of
networks for which betweenness can be calculated.

First, we calculate the BC of all nodes in the network
and store these results in memory. We denote this orig-
inal BC of node k as b (k). Then, we choose one node
i from the network and remove this node along with all
edges that are connected to node i. After removing node
i, we again calculate the BC of all remaining nodes. We
denote b;(k) for the BC of node k after node ¢ removal
and Ab;(k) for the BC difference before and after node
removal. Because we are only interested in single node
removal, we restored the removed node and repeated this
procedure for each node in the network.

Ab; (k) = bi(k) — b (k). (2)

Even with a brute force algorithm on a single PC, one
calculation of BC for ten thousand nodes requires only a
few minutes, but a whole set of calculations with every
node removed consumes at least ten thousand minutes,
about one week. Therefore, an efficient algorithm and
great computing power are essential for this calculation.
As stated above, we used Ulrik Brandes’ algorithm which
has complexity O(M N) for one calculation of the BC of
an unweighted network. Therefore, the complexity of the
required calculation for betweenness centrality difference
is reduced to O(M N?), which corresponds to only a few
minutes.

After we calculate Ab; (k) for every node k with node i
removal, we construct a matrix Ab = (b;;) (see Eq. (3))
from the results:

Aby(1) -+ Abi(j) -

Ab =

A ARG | ®)

The matrix dimension is N x N. It looks like the adja-
cency matrix of a weighted graph with NV nodes, edges of
which are connected to every node in the network with
corresponding weight b;;. The weight b;; represents how
two nodes ¢ and j are related indirectly. That is, how
much influence has node j had on removal of node i,
which corresponds to the gene expression level change in
a microarray data matrix. From this adjacency matrix,
we can build the secondary network. There are many
ways to build a connected graph from an adjacency ma-
trix. In this paper, we used two methods to build the
secondary network; these are the minimum spanning tree
and the percolation approaches.

The minimum spanning tree (MST) is a widely used
method to find an optimized solution in graph theory
or data structure in computer science. Prim (1957) and
Kruskal (1956) developed polynomial time algorithms to
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find MST [19,20]. For a given weighted network, the
MST is uniquely determined with (N —1) edges, where N
is the number of nodes. The MST is the spanning cluster
with the least weight sum. Because it is reasonable to
connect two nodes with higher correlation (Ab;;), in our
simulation we choose to connect the edge with largest
weight first, to find the substructure which represents the
maximum influential network. We put an edge between
a node and its most influential node, with a constraint
that every set of N nodes must be connected with only
(N —1) edges.

The percolation method is easier to implement than
MST. While the MST method has a constraint that the
tree cannot make a loop and must be connected with
only (N —1) edges, the percolation method does not re-
quire such constraints and can have more than (N — 1)
edges. After sorting all edges with Ab;(j) in descending
order, we add an edge between nodes i and j following
this order. When all nodes are connected and become
a single giant cluster, we stop the attachment of edges.
In other words, this means that the edges with weight
Ab;(j) > b* are identified as valid edges and can be used
to connect two nodes ¢ and j. In this sense, we can call
b* the percolation threshold because, if we consider this
process as a percolation process, connecting all bonds
with Ab;(j) > b* guarantees that the whole system is
connected; this means the system is percolated. The per-
colation approach also has the important meaning that
a node is connected to the highly correlated nodes first,
in a similar way to the MST method. Due to the lim-
itation of MST (i.e. the total number of edges should
be N — 1), some information can be lost in the MST
method; however, the percolation approach can make
good this missing part.

III. RESULTS AND DISCUSSIONS

1. Statistical Properties

For the Barabdsi-Albert (BA) model [1] with 1000
nodes and 1996 edges, we calculate the BC changes un-
der a node deletion Ab. We find that the distribution
of BC changes, Ab;(k), follows the power law (see Fig.
1). Because Ab;(k) can be negative or positive, we in-
vestigate only positive values to find out the power-law
distribution of BC changes. Even if we choose absolute
values instead of positive values, the power-law distribu-
tion is not changed significantly.

It is more meaningful to study the distribution of col-
umn and row averages of Ab matrix elements, because
the column and row averages correspond to the average
of perturbed BC of each node under an arbitrary node
removal and the average perturbed BC over all nodes
under a node removal, respectively. Interestingly, the
column and row averages of Ab also follow the power
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Fig. 1. Distribution of BC changes. Inset shows the dis-
tribution of the positive part in a log-log plot.
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Fig. 2. Distribution of (Ab;) and (Ab(k)), which are the
average of BC changes over rows ((Ab;)) and the average over
columns ((Ab(k))), respectively.

law, though the exponent is slightly different (see Fig.
2).

The power-law distribution of average BC changes over
either columns or rows is understood by reference to the
strong correlation between unperturbed BC b() () and
BC change summation over all nodes Ab;. Fig. 3 in-
dicates nearly linear correspondence between b(%) (i) and
Ab;. Because b(® (i) follows the power law, Ab; must fol-
low the power law as well. This is quite intuitive, because
it is expected that the BC change will become larger if
we remove the node with larger BC.

However, the power-law exponent of Ab;, 2.0, is differ-
ent from that of unperturbed BC, 2.2, for the BA model.
We find that the CPL change caused by the node removal
is responsible for the change in the exponent. We derive
the BC change summation Ab;. Using the fact that the
summation of BC corresponds to the CPL of the net-
work, Ab; can be rewritten as follows:
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Fig. 3. Relation of the unperturbed BC and the average of

the BC changes. The BC changes of each node are directly
proportional to the original BC.
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Fig. 4. Degree distribution of the secondary network con-
structed by using the MST method.

Ab; = > Abj(k)

ki
=) bilk) =Y b O (k) + b ()
k k
~ AD + b (5), (4)

where AD is the summation of the CPL change of the
network. Thus, the BC change is determined by both
the CPL change and the unperturbed BC, which leads
to the different exponent of the BC change distribution
compared to that of the unperturbed BC distribution.

2. Secondary Networks

We construct secondary networks that reflect the re-
lation between nodes under BC changes. For instance,
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Fig. 5. Degree distribution of the secondary network con-
structed by using the percolation method.
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Fig. 6. Relation between degrees of the original network
and the secondary network.

if b;(k) is larger, the nodes i and k are more likely to
be connected. As we describe in Sec. II. , we construct
the secondary networks in two different ways: MST and
percolation. In the degree distribution of secondary net-
works, we find that secondary networks also show scale-
free behavior (see Figs. 4 and 5). However, the ex-
ponents are very different from the degree exponent of
the original network. The network constructed by using
MST shows the exponent of 2.2, and that from perco-
lation indicates the exponent 1.9, which is far from 3.0,
the degree exponent of the original BA network. The
degree exponent of secondary networks is similar to the
exponent of BC distribution of the BA model. We guess
that it might be related to the fact that BC changes gov-
erning secondary networks are nearly proportional to the
BC of the original networks.

We find that the resulting secondary networks have
structural similarity to the original network on compar-
ing local properties of secondary networks, such as degree
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and nearest neighbors, to those of the original network.
The degrees of those networks show strong correlation in
Fig. 6.

IV. CONCLUSIONS

We study BC changes under a node deletion in the BA
model. We find that BC changes follow the power-law
distribution, and the secondary networks constructed by
using MST and a percolation method have similar local
structure to their original networks. Strong correlation
between unperturbed BC and BC changes of a node gives
rise to the power-law distribution of BC changes. Local
similarity of secondary networks and original networks
indicates that the deletion of a node greatly affects BCs
of nearest neighbors.
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