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METHODOLOGY

Optimizing drug–target interaction 
prediction based on random walk 
on heterogeneous networks
Abhik Seal*, Yong‑Yeol Ahn and David J Wild

Abstract 

Background: Predicting novel drug–target associations is important not only for developing new drugs, but also for 
furthering biological knowledge by understanding how drugs work and their modes of action. As more data about 
drugs, targets, and their interactions becomes available, computational approaches have become an indispensible 
part of drug target association discovery. In this paper we apply random walk with restart (RWR) method to a hetero‑
geneous network of drugs and targets compiled from DrugBank database and investigate the performance of the 
method under parameter variation and choice of chemical fingerprint methods.

Results: We show that choice of chemical fingerprint does not affect the performance of the method when the 
parameters are tuned to optimal values. We use a subset of the ChEMBL15 dataset that contains 2,763 associations 
between 544 drugs and 467 target proteins to evaluate our method, and we extracted datasets of bioactivity ≤1 and 
≤10 μM activity cutoff. For 1 μM bioactivity cutoff, we find that our method can correctly predict nearly 47, 55, 60% 
of the given drug–target interactions in the test dataset having more than 0, 1, 2 drug target relations for ChEMBL 
1 μM dataset in top 50 rank positions. For 10 μM bioactivity cutoff, we find that our method can correctly predict 
nearly 32.4, 34.8, 35.3% of the given drug–target interactions in the test dataset having more than 0, 1, 2 drug target 
relations for ChEMBL 1 μM dataset in top 50 rank positions. We further examine the associations between 110 popular 
top selling drugs in 2012 and 3,519 targets and find the top ten targets for each drug.

Conclusions: We demonstrate the effectiveness and promise of the approach—RWR on heterogeneous networks 
using chemical features—for identifying novel drug target interactions and investigate the performance.
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Background
Recent work has demonstrated the power of network-
based approaches in drug discovery [1–3]. We have 
shown previously that a large semantic network of drug–
target interactions provides a powerful framework for 
predicting new associations [4] and that an algorithm 
that predict drug-target associations by using this net-
work performs surprisingly well, even without training 
datasets or incorporating target preference [5].

In this work, we apply a random walk-based link pre-
diction algorithm based on Chen et  al. [3] to a more 

extensive drug–target network and evaluated its per-
formance using an external dataset. We combine three 
networks—drug–drug, target–target, and drug–tar-
get—to construct a heterogeneous network of drugs and 
targets. The links between drugs are obtained by quanti-
fying molecular similarity with chemical fingerprints and 
examining the shared targets. The links between targets 
are obtained by calculating sequence similarity between 
proteins and again examining the shared drugs. Finally, 
the links between drugs and targets are obtained from 
DrugBank [6].

Random walk is a useful mathematical framework 
that provides a systematic way to measure importance 
of nodes in a network. The most widely known is the 
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PageRank algorithm [7]. PageRank, developed for rank-
ing web pages, measures page clicks of hypothetical web 
surfers who randomly click hyperlinks in the network of 
webpages. Since it is possible for the surfer to be trapped 
in a dead-end webpage that does not have any outgoing 
link, at each time step the surfer may jump to a random 
webpage with a probability c. Interestingly, this formula-
tion also provides a simple way to define a random walk-
based “distance” from a node a (or a set of nodes) to 
every other node, namely by allowing the random walk-
ers to jump only to the source node a (or the source set of 
nodes) and restart from there. As a result, it is more likely 
to find the random walker at the vicinity of the source 
node than at a distant part of the network, and thus we 
are able to estimate the relevance (closeness) of each 
node with respect to the source node. The prediction 
method applies this idea to identify drugs and targets 
that are relevant to a set given set of drugs and targets.

Consider an undirected, unweighted network G =  (V, 
E), where V is the set of nodes and E is the set of links. 
For each pair of nodes a, b ∈ V  we can assign a proximity 
score by executing the following procedure: (1) we start 
a random walker from a. (2) At each time step, with the 
probability 1 − c, the walker walks to one of the neigh-
bors, b, according to the transition probability matrix 
Wab =  Sab/Ka, where Sab is the adjacency matrix of the 
network and (Sab equals 1 if node a and b are connected, 
0 otherwise) Ka denotes the degree of a. (3) With the 
probability c, the walker goes back to a. (4) After many 
time steps the probability of finding the random walker at 
node x converges to the steady-state probability, which is 
our proximity score Sa→x. This approach allows us to gen-
erate candidate targets for a given drug even if the drug 
does not have any known targets. If there is a missing 
interaction between drug d and target t, we expect that d 
is more likely to interact with other targets that are simi-
lar to t, and drugs that are similar to d are more likely to 
interact with t. Therefore, we expect to see many indirect 
paths that connect d and t. These indirect paths are likely 
to be captured by the random walkers.

Methods
We apply the RWR algorithm to a drug–target network 
and use an external dataset extracted from ChEMBL 15 
(544 drugs and 467 proteins) at bioactivity cutoff points 
of 10 and 1  μM to quantitatively evaluate the perfor-
mance and robustness of the approach.

Datasets
Drugs
We compile a set of approved drugs from DrugBank data-
base (Version 3.0) [6], consisting of 727 compounds and 
3519 protein targets (Additional file 1). To construct the 

network between drugs, we incorporate two types of simi-
larity measures: chemical (structural) similarity and tar-
get similarity. We calculate chemical similarity between 
drugs by using the Jaccard Index (Tanimoto Coefficient) 
between their chemical fingerprints. The Jaccard Index is 
defined as the size of the intersection of two sets divided 
by the size of the union of the sets, ranging between 0 
and 1. For binary vectors like chemical fingerprints, it is 
defined as C/(A + B − C) where C is the number of bits 
in common, A is the number of bits in one of the finger-
prints, and B is the number of bits in the other fingerprint. 
We use four types of chemical features namely, MDL 
MACCS166 keys (fragmental descriptors) [8], ECFP6 fin-
gerprints (extended connectivity fingerprint path 6) [9], 
2D Pharmacophore fingerprints (PHFP4) [10] and ROCS 
program which uses Tanimoto combo similarity—which 
combines shape and color measures of a compound, we 
calculate them with ROCS program [11].

ECFP (extended connectivity fingerprint) encodes 
information on atom-centered fragments that is derived 
from the variant of the Morgan algorithm [12]. ECFPs are 
generated using the neighborhood of each non-hydrogen 
atom into multiple circular layers up to a given diam-
eter. These atom-centric substructural features are then 
mapped into integer codes using a hashing procedure, 
which constitute the extended-connectivity fingerprint. 
ECFP can, for instance, represent a very large number 
of features (over 4 billion), do not rely on predefined 
dictionary of features, can represent stereochemical 
information, and can be interpreted as the presence of 
particular substructures. 2D pharmacophore fingerprints 
are calculated using topological (bond) distances.

Pharmacophore fingerprints consist of pairs, triplets, 
or quartets of molecular features and the corresponding 
bond distances among them. We use PHFP_4 (quartets 
which includes number of bonds in the shortest path 
between the features) fingerprints for the calculation. 
The feature vectors of quartets involve four pharmaco-
phoric features, six Euclidean distances separating those 
features, and an indication of chirality. For 3D alignment 
and similarity we used ROCS 3.2, which is a shape-simi-
larity method based on the Tanimoto-like overlap of vol-
umes. The alignment was developed using the Combo 
score, which combines the Tanimoto shape score with the 
color score that added the score for the appropriate over-
lap of groups with similar properties (donor, acceptor, 
hydrophobe, cation, anion, and ring) [http://docs.eyeso-
pen.com/rocs/shape_theory.html] defined by SMARTS. 
Conformers for the data set is created using OMEGA 
[13], about 250 conformers with RMSD threshold of 0.6 
is generated. ROCS performs shape-based overlay of 
conformers as atom-centered Gaussian functions. ROCS 
score performed in color optimization mode where it 

http://docs.eyesopen.com/rocs/shape_theory.html
http://docs.eyesopen.com/rocs/shape_theory.html
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optimizes the molecular overlay to maximize both the 
shape overlap and the color overlap obtained by align-
ing groups with the same properties that are contained in 
the color force field file. This overlay is then subsequently 
scored using the sum of shape Tanimoto for the overlay 
and the color score called Tanimoto combo score. We 
use Cs to refer the N by N chemical compounds similar-
ity matrix. For the 727 drugs we used different chemical 
descriptors to calculate the Tanimoto similarity distribu-
tion to create a view of how similar the drugs look like. 
The distributions of different similarities Fig.  1 shows 
that for four fingerprints (166 MACCS Keys, PHFP4, 
3D ROCS, and ECFP6), 0.56% had a similarity above 
0.7 for the MACCS keys, 0.31% had similarity above 0.4 
for PHFP4, 0.88% had similarity above 1.2 Tanimoto 
Combo score for ROCS, 0.24% had similarity above 0.3 
for ECFP6. The mean similarity is 0.346, 0.019, 0.742, and 

0.063 for MACCS, PHFP4, ROCS, ECFP6 fingerprints, 
respectively. This indicates how diverse chemical struc-
tures are in the drug dataset (Additional file 2).

Proteins
We extracted 3,519 target proteins across all available spe-
cies and their sequences from the DrugBank database. As 
proteins in other species may provide useful information 
in our network-based approach, we keep all the proteins 
regardless of species. Note that, human proteins still domi-
nate the dataset. We calculate the sequence similarity matrix 
Ts by using the R Biostrings package and the normalization 
procedure proposed by Bleakley and Yamanishi [2]:

(1)Ts =

SW
(

g , g
′
)

√

SW
(

g , g
)

√
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(

g
′

, g
′
)

,

Fig. 1 Plots showing the compounds similarity distributions according to the four types of Chemical fingerprints. a ROCS similarity, b PHFP4 simi‑
larity, c MACCS similarity, d ECFP similarity.
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where SW (∙, ∙) means the original Smith–Waterman simi-
larity score.

Drug target matrix
We construct a drug-target relationship matrix A 
whose element A(i,j) is 1 if drug i interacts with target 
j, otherwise 0. The matrix is sparse; the total number 
of connections among the drugs and targets is only 
2,557, with 687 drugs having at least one known target 
and with 628 proteins having at least one drug. There 
are 73 connected components in the whole drug target 
network dataset. The largest connected component in 
this bipartite graph has 498 drugs and 279 proteins. 
The connections are concentrated to a small number of 
drugs (see Fig.  2a) that affect nervous systems mostly 
psychoanaleptics and psycholeptics have the largest 
number of interactions. As most drugs are metabolized 
by cytochrome p450, which serves as an important 
protein target and enzyme for the drugs, the interac-
tion between important enzymes CYP3A4, CYP2D6 
and CYP3A5 are not considered on the drug target 

interaction matrix except for the drug paliperidone, 
which has interactions to all the three cytochromes tar-
gets mentioned above.

Figure 2b exhibits the targets that interact with most 
number of drugs. The top frequent targets are Mus-
carinic receptor (ACM1), Adrenoreceptor alpha 1A 
(ADA1A), Histamine receptors (5HT2A), and dopa-
mine receptors (DRD2). In addition to the drug–drug 
similarity matrix Cs (based on chemical similarity) and 
target–target similarity matrix Ts (based on sequence 
similarity), we introduce additional measure of drug–
drug and target–target similarities based on the net-
work structure. Cn

s  is a drug–drug similarity matrix 
based on the number of shared targets between drugs; 
Tn
s  is a target–target similarity matrix based on the 

shared drugs. The similarity between two drugs di and 
dj is quantified by Jaccard coefficient, which is defined 
by:

(2)Cn
s (di, dj) =

Ml(i, j)

Ml(i, i)+Ml

(

j, j
)

−Ml(i, j)
,

a

b

Fig. 2 a drugs with the most target associations and b targets with the most drug associations.
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where Ml is the inner product of the drug–target inter-
action matrix. The similarity between targets is defined 
in the same manner.

We define the final drug–drug similarity matrix Sd by 
taking a linear combination of the chemical similarity 
matrix (Cs) and target sharing similarity matrix (Cn

s ). Sim-
ilarly, the final target–target similarity matrix St is calcu-
lated using the sequence similarity matrix (Ts) and drug 
sharing similarity matrix (Tn

s ).

Random walk with restart implementation
We combined drug–drug, drug–target, and target–tar-
get networks into a undirected heterogeneous network. 
Many nodes have connections to both drugs and targets 
and we call them bridge nodes. At a bridge node, a ran-
dom walker may jump to a node with the other type or to 
a node with the same type. The probability to do so is λ 
and 1 – λ, respectively. For instance, if a random walker is 
at a drug node, it can jump to one of the connected target 
nodes with the probability λ, or jump to connected drug 
nodes with the probability 1 − λ. We call the parameter 
λ the jumping probability. If λ is 0, a random walker will 
explore only one type of networks. Most importantly, 
the probability p∞(i) is the probability of finding the ran-
dom walker at node i in the steady state. It gives a meas-
ure of probability of source and target node (proximity) 
between node i and the source nodes where the random 
walks restarts.

The transition matrix is represented by,

Here WTT is the target to target transition matrix, WDD 
is the drug to drug transition matrix, WDT is drug to tar-
get transition matrix and WTD is target to drug transition 
matrix. The calculation of each of the transition matrix in 
discussed in Chen et al. [3]. The random walk is imple-
mented on the heterogeneous network using the Eq.  (5) 
given below

pt is a vector in which ith elements holds the probability 
of finding the random walker at node i at time step t. Ini-
tial probability vector p0 controls the restart probability c.

u0 and v0 be the initial probability vectors for target net-
work and drug network, respectively. Parameter ƞ con-
trols the importance of two kinds of seed nodes, i.e. drug 

(3)Sd = wdCs + (1− wd)C
n
s

(4)St = wtTs + (1− wt)T
n
s

W =

[

WTT WTD

WTD WDD

]

(5)pt+1 = (1− c)WTpt + cp0

(6)p0 =

[

(1− η)u0
ηv0

]

(

initial probability matrix
)

node and target node. We tested the importance param-
eter η for different values ranging from 0 to 1.

After a number of iteration steps, the pt converges to a 

steady-state probability vector p∞, where p∞ =

[

u∞
v∞

]

. In 

practice, we consider pt = p∞ if the change between pt and 
pt + 1 (measure by the Frobenius norm) is less than 10−10.

For finding novel targets for a given drug, we set the 
drug and the targets that are directly connected to the 
drug as our seed nodes. Suppose that there are six targets 
T1,…,T6 and four drugs D1, D2, D3, and D4. We focus on 
drug D3 and tries to find novel targets for D3. We already 
know that D3 interacts with T2 and T3. Then T1, T4, and 
T5 are candidate targets for drug D3. We set T2, T3, and 
D3 as the source nodes, namely u0 =  [0,1,1,0,0,0]T and 
v0 = [0,0,1,0]T

The stationary probability p∞ represents the expected 
relevance of each drugs and targets regarding the source 
node set T2, T3 and D3. For instance, if the value for T1 
is the largest among T1, T4 and T5, then we expect that 
T1 is most likely to interact with D3.

Results and discussion
Evaluating target prediction performance using link 
perturbation
The network-based method aims to predict new tar-
gets for a given drug. We evaluated our approach using 
a perturbed network where we have removed some links 
to measure how well our approach re-identifies those 
removed links. There are five parameter to explore: the 
restart probability c, the jumping probability λ, the rela-
tive importance ƞ, which controls the relative importance 
between two types of seeds, wd and wt that weigh the 
drug and target similarity matrices and network based 
similarity measure of the drugs and proteins, respectively. 
Among these five parameters, we have tested ƞ because, 
to our knowledge, the restart probability c, jumping prob-
ability λ, and wd and wt are not likely to affect the results 
in a significant way. First, it is known that in most cases 
the choice of restart probability c does not affect perfor-
mance of PageRank algorithm and other PageRank-based 
algorithms. For instance, the results of PageRank are 
highly insensitive to the choice of restart probability [14, 
15]. It has been shown that the prediction results from 
RWR are also robust [7, 14–16]. Because of these evi-
dences, we here simply adopt the previously used value of 
0.3 [3]. Second, the robustness of λ (jumping probability) 
has already been discussed [15–17]. It has been shown 
that the weight parameters wd and wt are robust among 
the prediction results [3].

In our drug target network 684 (94%) drugs have 
at least one target. We prepare a test network of 684 
drugs where we remove one links from 684 drugs 
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with a total of 684 drug–target interactions. The links 
include drugs which has only one target in order to see 
if the method able to predict single known interaction. 
We check how many missing links are in top N of the 
ranked list. We divide the number of actual targets that 
are in the top N lists by the number of tests (684) and 
call the fraction as ‘recovered fraction’. We also used a 
random set to calculate the statistics with same param-
eters and found that the results are way better than 
random set. We tested our results with different val-
ues of wd and wt ranging from 0 to 1 and found that 
at extreme point like 0 and 1 the performances drops 
radically but the performance gets best on values of 
wd and wt of 0.5 given in Additional file 3: Sheet 3. We 
test different values of η for the four different chemical 
fingerprints to identify the optimal value of η and the 
right of chemical features. We observed that the pre-
diction performance becomes optimal when η is small 
but not 0. We found optimal performance at η = 0.01.  
For all the other values of η(0.1− 0.9) the prediction 
rate for all fingerprints is equal. The values are given in 
the Additional file 3: Sheet 1. We find nearly 28% of the 
true interactions out of 684 can be retrieved at the top 
10 rank positions and more than 38% of the interactions 
can be retrieved at the top 50 rank positions. We also 
prepare 10 test networks of drugs that have more than 
two targets links, where we randomly remove 100–
1,000 links. Using the 10 test networks we predicted 
the removed links. We repeat this process, from pre-
paring a test network to calculating the recovered frac-
tion, 50 times to obtain the ‘average recovered fraction’. 
From Table 1 we can see that if we remove 100 links it 
gave us the best prediction rates and as we increase the 
number of removed links to 1,000 the prediction rates 

falls. From Table  2 shows the recovered fraction rates 
for top 10, 25, 50, 100, 200, 500, 1,000 retrieved targets 
we also find almost 32% of the true interactions can be 
retrieved at the top 10 rank positions for each of the 
test networks and more than 75% of the true interac-
tions can be retrieved at the top 50 rank positions. This 
indicates that the method performs well if we remove 
links from drugs which are having at least two or more 
known interactions, since it uses the given interac-
tion information in the network. We also measured 
the area under accumulation curve, area under ROC 
curve AUC (Top 10%), BEDROC and enrichment fac-
tor given in Table 1. The area under the receiver operat-
ing characteristic (ROC) curve (AUC) is widely used to 
evaluate the performance of the ranking method. The 
advantage of using AUC is, the value ranges from 0 to 
1 with 0.5 corresponding to randomness. Another key 
criterion for measuring the success of ranking predic-
tion is the enrichment of annotated associations among 
top ranking associations. The higher the percentage of 
annotated associations among the top ranking associa-
tions, the better the performance of the prediction. The 
enrichment criterion is evaluated by enrichment fac-
tor (EF) [16, 17]. EF reflects the capability of a screen-
ing application to detect true links (true positives) 
compared to random selection. Thus, its value should 
always be greater than 1 and the higher it is, the better 
the enrichment performance. When we are predicting 
links it should rank true links in the top-ranking list. 
Metric likes ROC not sensitive to early recognition for 
example considering cases like where (1) true links are 
retrieved at beginning of a rank ordered list, (2) where 
true links are randomly distributed and (3) where true 
links, which are retrieved in the middle of the rank, 
ordered list. In all of the above cases ROC is 0.5 but in 
terms of early recognition we see that case (1) is better 
than (2) and (3). To overcome these limitations meth-
ods such as RIE and BEDROC have been proposed. By 
changing the tuning parameter, α, one can test whether 
the method is able to rank true links early or not.

We found that the performance of the algorithm for 
ranking the targets by different chemical features is 
approximately same which indicates using this approach 
a user can identify protein targets with any one set of 
chemical features. We used public 166 MACCS keys, 
ECFP6, PHFP4 and 3D ROCS to perform the analysis 
and it is surprising that the commercial programs fea-
ture performance is same as the 166 public MACCS 
keys.

As a baseline, we test how RWR results differ from the 
results of random set of interactions. We randomized the 
interactions and similarity matrices and performed RWR 

Table 1 Shows the recovered fraction values for  top 10, 
25, 50, 100, 200, 500 and  1,000 ranks with  the number 
of links removed

Number of links 
removed

AUAC AUC BEDROC EF AUC (top 
10%)

100 0.947 0.991 0.833 9.23 0.867

200 0.938 0.995 0.827 9.100 0.857

300 0.930 0.995 0.818 8.95 0.845

400 0.920 0.991 0.805 8.79 0.830

500 0.916 0.997 0.801 8.71 0.824

600 0.908 0.995 0.789 8.56 0.812

700 0.899 0.981 0.780 8.42 0.802

800 0.885 0.997 0.761 8.20 0.783

900 0.869 0.955 0.741 7.91 0.765

1,000 0.854 0.956 0.715 7.62 0.741
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and found the random set prediction rate was way below 
our original prediction rate as given in Additional file 3: 
Sheet 1.

Evaluating target prediction performance using  
an external dataset (ChEMBL)
In addition to the internal evaluation using link pertur-
bation approach, we evaluate the performance of our 
method using an external dataset, namely ChEMBL ver-
sion 15 database.

From ChEMBL 15 data we extract all the drugs and 
targets that have activity values not more than 1 μM 
(Additional file  3: Sheet 4) and 10  μM (Additional 
file  3: Sheet 4) with units IC50, Ki, Kd, EC50, AC50, 
LC50, and GI50. Our training model is based on Drug-
Bank and UniProt database so we mapped the drugs 
and targets ChEMBL ids with the DrugBank ids and 
UniProt ids. We used Pubchem mapping tool (http://
pubchem.ncbi.nlm.nih.gov/idexchange/) to map 
ChEMBL ids to DrugBank ids and the UniProt map-
ping tool (http://www.uniprot.org/?tab=mapping) 
to map target ChEMBL ids to UniProt ids. It gives us 
544 drugs and 467 protein targets, with 3,463 and 564 
drug target interactions those are below 10 and 1 μM, 
respectively. Naturally, there are lots of interactions 
that are present in both DrugBank and ChEMBL. We 
tested performance of parameter η at different values 
on ChEMBL 1 μM set and 10 μM having which have 
more than 0, 1 and 2 target relations. Figures  3 and 4 
shows the recovered fractions against the rank with dif-
ferent η (eta) values for ChEMBL datat at 1 and 10 μM 
cutoff with different fingerprints respectively.

From Tables  3 and 4 we observe that RWR perfor-
mance is better for 1 μM target than 10 μM because 
at 10 μM we have lots off targets from different classes 
and as a result of that the prediction rate falls. For 

ChEMBL 1 μM dataset, drugs having more than 0, 1 
and 2 targets we achieve BEDROC score of 0.433, 
0.553 and 0.611, respectively, which is much better 
than a random set of interactions. To test whether ran-
dom walk performs better than just a simple sequence 
similarity search we took the approved drugs and it’s 
known targets from the ChEMBL 10 μM dataset and 
performed sequence similarity based sech against 3,519 
targets and ranked them. We found RWR performance 
is way better in ranking targets than performing sim-
ple sequence based search. The results are shown on 
Tables  3 and 4. This is the first time that the random 
walk-based method is evaluated using a binding assay 
dataset (cf. [3, 5]).

Case study: profiling top selling drugs
Here, as a case study we investigate the target profiles of 
the popular top selling drugs in 2012 [18]. First, we con-
sider u∞, the steady-state probability vector for the tar-
gets in our framework, as ‘target profile’ of a drug. Then 
we examine the top 10 predicted targets for the top sell-
ing drugs. We find that some targets are associated with 
many drugs (see Table  5). For instance, adrenoceptor 
alpha 1A appears in 60% of drug’s top 10 target associa-
tion lists; serotonin receptor 5HT2A appear in 43%; and 
adrenoceptor alpha 1B in 35%. Most drugs shown on the 
Table 5 mostly belong to the rhodopsin class of GPCR’s. 
In Additional file  4, predictions are provided for 110 
drugs with 3,519 targets and Fig. 5 shows a bipartite net-
work of 110 drugs with top 10 predicted targets for each 
drug.

We took some random drugs and tried to find known 
binding associations to protein targets. We searched 
three databases ChEMBL [19], PDSP [20], and Pubchem 
[21] using the binding coefficients like IC50 and Ki. 
Table  6 lists the 10 predicted drug–target associations 

Table 2 Shows the recovered fraction values for top 10, 25, 50, 100, 200, 500 and 1,000 ranks with the number of links 
removed

# Of links removed TOP 10 (%) TOP 25 (%) TOP 50 (%) TOP 100 (%) TOP 200 (%) TOP 500 (%) TOP 1,000 (%)

100 32.24 78.24 87.76 90.74 91.92 93.22 93.88

200 31.92 77.95 87.26 89.86 91.15 92.37 93.12

300 32.14 78.31 86.82 89.48 90.68 91.80 92.63

400 32.04 77.4 85.34 88.07 89.24 90.33 91.45

500 32.62 77.39 85.04 87.56 88.70 89.95 91.1

600 32.53 76.21 83.68 86.23 87.54 88.86 90.16

700 32.5 75.64 82.69 85.18 86.57 87.89 89.33

800 33.06 74.13 80.88 83.45 84.86 86.35 87.97

900 33.58 72.14 78.49 81.04 82.77 84.57 86.38

1,000 33.71 69.81 76.008 78.31 80.22 82.12 84.42

http://pubchem.ncbi.nlm.nih.gov/idexchange/
http://pubchem.ncbi.nlm.nih.gov/idexchange/
http://www.uniprot.org/?tab=mapping
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that we have identified evidence of binding interaction in 
other databases. These findings suggest that these targets 
may have many undiscovered interactions with existing 
drugs. Further investigation may have significant values 
on understanding side effects of existing drugs as well as 
repurposing them.

Finally, let us summarize the contributions of this 
paper. First, we offer a general approach that takes the 
whole drug target network into account without sepa-
rating protein categories, in contrast to the previous 
study [3]. The following estimation corroborates our 
approach. Our drug-target dataset contains 727 drugs 

and 3,519 proteins. The number of interactions between 
drugs and targets is 2,557, which makes 684 drugs to 
have at least one known target and 457 drugs to have 
two or more interactions. The proteins in the dataset 
are grouped under 15 different categories according to 
ChEMBL target classifications (https://www.ebi.ac.uk/
chembl/target/browser). Out of 3,519 proteins, 1,386 
proteins belong to one of the categories and other pro-
teins do not have category information. The number of 
drugs that have at least two interactions with proteins 
that are categorized is 412. Among these 412 drugs, the 
number of drugs that have interactions with proteins 
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Fig. 3 Showing the recovered fractions against the rank with different η (eta) values for ChEMBL datat at 1 μM cutoff. The recovered fraction is calcu‑
lated by the number of targets retrieved at different rank positions over total number true interactions. a MACCS, b PHFP4, c ROCS, d ECFP4.
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from multiple groups is 169. In other words, we esti-
mate that about 40% of drugs have interactions across 
multiple groups according ChEMBL dataset. Therefore, 
it is more reasonable to consider all proteins together, 
rather than running the prediction model separately for 
each category.

Second, we further investigate the methodology by 
presenting a benchmark of a parameter ƞ in conjunc-
tion with the four chemical fingerprint types: MACCS 
166 keys, ECFP6 fingerprints, PHFP4 fingerprints, and 
ROCS. In the previous study, the parameter space of ƞ is 
not explored below 0.1, but we find that we can improve 
the performance by decreasing eta below 0.1. We also 

find that the performance is robust under the choice of 
chemical fingerprinting method, particularly when ƞ is 
around the optimum (~0.01). Very small η eta means the 
walk in the target network is much more important than 
the walk on the drug–drug network. In a sense, it indi-
cates that drug network add some information but only 
marginally. And also the drug network is not very useful 
in prioritizing targets.

Conclusion
We have demonstrated that RWR approach provides a 
powerful way of predicting of drug–target interactions. 
There are two significant benefits of the approach. First, 
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Fig. 4 Showing the recovered fractions against the rank with different η (eta) values for ChEMBL data at 10 μM cutoff. The recovered fraction is calcu‑
lated by the number of targets retrieved at different rank positions over total number true interactions. a MACCS, b PHFP4, c ROCS, d ECFP4.
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Table 3 Shows the types of data we used the drug target interaction having more than 1 and 2 drug interactions, area 
under the accumulated curve (AUAC), area under the ROC curve (AUC), bedroc and, enrichment factor (EF) and AUC Top 
10%

Data types Number of targets AUAC (%) AUC (%) BEDROC EF AUC (Top 10%)

ChEMBL 1 μM (RWR) >0 0.709 0.995 0.433 5.058 0.455

ChEMBL 1 μM (Seq) >0 0.670 0.670 0.396 4.48 0.414

ChEMBL 1 μM (random RWR) >0 0.494 0.493 0.075 1.090 0.079

ChEMBL 10 μM (RWR) >0 0.596 0.837 0.323 3.865 0.351

ChEMBL 10 μM (Seq) >0 0.518 0.518 0.237 2.641 0.2555

ChEMBL 10 μM (random RWR) >0 0.394 0.364 0.036 0.954 0.029

ChEMBL 1 μM (RWR) >1 0.784 0.784 0.553 6.286 0.569

ChEMBL 1 μM (Seq) >1 0.652 0.651 0.390 4.507 0.412

ChEMBL 1 μM (random RWR) >1 0.483 0.483 0.081 1.290 0.083

ChEMBL 10 μM (RWR) >1 0.613 0.61 0.353 4.091 0.378

ChEMBL 10 μM (Seq) >1 0.551 0.552 0.279 3.084 0.300

ChEMBL 10 μM (random RWR) >1 0.514 0.514 0.075 1.244 0.088

ChEMBL 1 μM (RWR) >2 0.823 0.824 0.611 6.866 0.631

ChEMBL 1 μM (Seq) >2 0.701 0.705 0.513 5.109 0.469

ChEMBL 1 μM >2 0.533 0.533 0.0671 1.465 0.065

ChEMBL 10 μM (RWR) >2 0.632 0.633 0.399 4.569 0.422

ChEMBL 10 μM (Seq) >2 0.569 0.569 0.298 3.03 0.315

ChEMBL 10 μM (random RWR) >2 0.521 0.521 0.262 1.95 0.125

Table 4 Shows the types of data we used the drug target interaction having more than 1 and 2 drug interactions and sen-
sitivity (hit rate) at top 10, 25, 50, 100 and 200 predicted targets

Data types Number of targets Top 10 (%) Top 25 (%) Top 50 (%) Top 100 (%) Top 200 (%)

ChEMBL 1 μM (RWR) >0 0.144 0.342 0.470 0.532 0.607

ChEMBL 1 μM (Seq) >0 0.164 0.315 0.394 0.420 0.430

ChEMBL 1 μM (random RWR) >0 0.002 0.013 0.018 0.036 0.021

ChEMBL 10 μM (RWR) >0 0.11 0.247 0.324 0.386 0.409

ChEMBL 10 μM (Seq) >0 0.122 0.183 0.234 0.249 0.254

ChEMBL 10 μM (random RWR) >0 0.014 0.023 0.035 0.048 0.079

ChEMBL 1 μM (RWR) >1 0.274 0.477 0.550 0.580 0.614

ChEMBL 1 μM (seq) >1 0.189 0.350 0.428 0.472 0.513

ChEMBL 1 μM (random RWR) >1 0.007 0.023 0.038 0.076 0.091

ChEMBL 10 μM (RWR) >1 0.220 0.277 0.348 0.417 0.446

ChEMBL 10 μM (seq) >1 0.13 0.212 0.276 0.296 0.302

ChEMBL 10 μM (Random RWR) >1 0.014 0.023 0.035 0.048 0.079

ChEMBL 1 μM (RWR) >2 0.271 0.518 0.598 0.634 0.677

ChEMBL 1 μM (seq) >2 0.19 0.393 0.53 0.56 0.598

ChEMBL 1 μM >2 0.006 0.018 0.034 0.055 0.08

ChEMBL 10 μM (RWR) >2 0.233 0.297 0.353 0.4299 0.472

ChEMBL 10 μM (seq) >2 0.13 0.22 0.295 0.316 0.324

ChEMBL 10 μM (Random RWR) >2 0.012 0.028 0.040 0.057 0.093
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it provides a natural way to integrate multiple types of 
information such as drug–drug similarity, target–tar-
get similarity, and existing drug–target interactions 
into a coherent framework. Second, in contrast to other 
approaches like short-path-based methods, the random 
walk framework incorporates the network structure 
around a single or multiple points of interests exten-
sively, taking into account not only the closeness of tar-
gets, but also the multitude of the paths to the targets. 
These properties allow us to predict novel targets even 
for the drugs that have no known target, by connect-
ing such drugs to the network through the drug–drug 
similarity. Still, the performance of RWR could be fur-
ther improved by incorporating more known drug–tar-
get interactions. We have studied the performance of 
the method under the variations of ƞ parameter and 
the choice of fingerprints methods, showing that while 
training the model one can use any of the chemical fea-
tures as similarity matrix with parameter η = 0.01 to 

Table 5 The top 10 associated targets of  110 drugs 
with  true percentage of  associated target before  predic-
tion and predicted percentage of association

Targets Percentage of drugs  
associated with the  
targets based on  
DrugBank and ChEMBL (%)

Percentage of drug 
associations appear-
ing in top-10 target list 
in our prediction (%)

ADA1A 7.27 60

5HT2A 4.54 43.63

ADA1B 7.27 35.45

5HT1A 4.54 33.63

ADRB1 5.45 31.81

5HT1B 5.45 30.90

5HT2C 3.63 30

ACM2 9.09 26.36

5HT3A 4.54 25.45

5HT1D 5.45 23.63

ACM3 9.09 21.81

5HT7R 4.54 18.18

Fig. 5 Shows the network of the top 10 predicted targets of 110 drugs. Blue nodes represent drugs and red ones represent targets. The size and label 
of the target nodes is proportional to the degree of the nodes.
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obtain the predicted results, without significantly affect-
ing the outcomes.
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Table 6 Drug target interactions with  association values 
from different databases

Protein Drug Source Activity Tpe Activity μM

5HT2A Carvedilol Pubchem AID 
625192

IC50 0.41

5HT2A Desloratadine Pubchem AID 
625192

IC50 0.033

KCNH2 Lidocaine ChEMBL IC50 263.02

ADRB1 Salmetorol ChEMBL IC50 0.501

5HT1A Amphetamine PDSP database Ki 6.6

HDAC2 Atorvastatin ChEMBL IC50 22.5

ADA1A Duloxentine PDSP Ki 10

ACM1 Montelukast Pubchem AID 
625153

IC50 8.045

SC6A4 Quetiapine PDSP Ki 10
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