
Growing network model for community with group structure

Jae Dong Noh,1 Hyeong-Chai Jeong,2 Yong-Yeol Ahn,3 and Hawoong Jeong3

1Department of Physics, Chungnam National University, Daejeon 305-764, Korea
2Department of Physics and IFP, Sejong University, Seoul 143-747, Korea

3Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
sReceived 7 December 2004; published 23 March 2005d

We propose a growing network model for a community with a group structure. The community consists of
individual members and groups, gatherings of members. The community grows as a new member is introduced
by an existing member at each time step. The new member then creates a new group or joins one of the groups
of the introducer. We investigate the emerging community structure analytically and numerically. The group
size distribution shows a power-law distribution for a variety of growth rules, while the activity distribution
follows an exponential or a power law depending on the details of the growth rule. We also present an analysis
of empirical data from online communities the “Groups” in http://www.yahoo.com and the “Cafe” in http://
www.daum.net, which show a power-law distribution for a wide range of group sizes.
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I. INTRODUCTION

Emergent properties of artificial or natural complex sys-
tems have attracted growing interest recently. Some of them
are conveniently modeled with a network, where constituent
ingredients and interactions are represented with vertices and
links, respectively. Watts and Strogatz demonstrated that
real-world networks display the small-world effect and the
clustering property, which cannot be explained with the regu-
lar and random networksf1g. Later on, in the study of the
WWW network, Albertet al. found that the degreesi.e., the
number of attached linksd of each vertex follows a power-
law distribution f2g. Those works have triggered a burst of
research on the structure and the organization principle of
complex networksssee Refs.f3–5g for reviewsd.

Many real-world networks, e.g., in biological, social, and
technological systems, are found to obey the power-law de-
gree distributionf3g. A network with the power-law distribu-
tion is called a scale-free network. One of the possible
mechanisms for the power law is explained with the
Barabási-AlbertsBAd model f6g. The model assumes that a
network is growing and that the rate acquiring a new link for
an existing vertex is proportional to a popularity measured
by its degree. The popularity-based growth appears very
natural since, e.g., in creating a new web site, one would link
it preferentially to popular sites having many links. With the
BA and related network models, structural and dynamical
properties of networks have been explored extensively.

On the other hand, there exists another class of networks
which have a group structure. Consider, for example, online
communities such as the “Groups” operated by Yahoof7g
and the “Cafes” operated by the Korean portal site Daumf8g.
They consist of individual members and groups, gatherings
of members with a common interest, and growth of the com-
munity is driven not only by members but also by groups. A
community evolves as an individual registers as a new mem-
ber. The newcomers can create new groups with existing
members or join existing groups. The online community is a
rapidly growing social networkf9g. The emerging structure
would be distinct from that observed in networks without the

group structure. In this paper, we propose a growing network
model for the community with the group structure. We model
the community with a bipartite network consisting of two
distinct kinds of vertices representing members and groups,
respectively. A link may exist only between a member vertex
and a group vertex, which represents a membership relation.

The bipartite networkf10g has been considered in the
study of the movie actor networkf1g consisting of actors and
movies, the scientific collaboration networkf10,11g of scien-
tists and articles, and the company director networkf10g of
directors and boards of directors. Usually those networks are
treated as unipartite by projecting out one kind of vertex of
less interestf12,13g. Some biological and social networks are
known to have a modular structuref14,15g, where vertices in
a common module are densely connected, while vertices in
different modules are sparsely connected. The modular struc-
ture is coded implicitly in the connectivity between vertices.
Unipartite network models with a modular structure were
also studied in Refs.f15–21g, where vertices form modules
which in turn form bigger modules hierarchicallyf15–17g or
the modular structure emerges dynamically as a result of
social interactionsf18–21g. In Ref. f21g, each vertex is as-
signed to a Potts-spin-like variable pointing to its module
f21g. These studies on the group structures of networks have
focused mainly on the groups with a finite number of mem-
bers. However, there are groups in the real-world online
community which keep growing as the community evolves.

Reflecting growing dynamics of the real-world online
community, our model takes account of the group structure
explicitly with a bipartite network consisting of member and
group vertices. Upon growing, both the member and group
vertices evolve in time. We study the dynamics of the size of
groups and the activity of the members. The size of a group
is defined as the number of members in the group and the
activity of a member is the number of groups in which the
member participates. When the community grows large
enough, the group size distribution shows a power-law dis-
tribution unlike the network models studied previously
f16,21g. To test our model, we analyze the empirical data
from online communities, the Yahoo “Groups”f7g and the
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Daum “Cafe” f8g, and show that both communities indeed
show power-law group size distributions for wide ranges of
group sizes.

This paper is organized as follows. In Sec. II, we intro-
duce the growing network model. Depending on the choice
of detailed dynamic rules, one may consider a few variants
of the model. Characteristics such as the group size distribu-
tion, the member activity distribution, and the growth of the
number of groups are studied analytically in a mean field
theory and numerically in Sec. III. Those characteristics are
also calculated for the real-world online communities and
compared with the model results. We conclude the paper
with a summary in Sec. IV.

II. MODEL

We introduce a model for a growing community with a
group structure. The community grows by adding a new
member at a time, who may open a new group or join an
existing groupf22g. The following notations are adopted: A
member entering the community at time stepi is denoted by
I i. The activity, the number of participating groups, ofI i is
denoted byAi. As members enter the community, new groups
are created or existing groups expand. Theath group is de-
noted byGa, its creation time byta, and its size bySa. The
total numbers of members and groups are denoted byN and
M, respectively.

Initially, at time t=0, the community is assumed to be
inaugurated bym0 members, denoted byI−sm0−1d , . . . , I0, be-
longing to an initial groupG1. That is, we have thatNst
=0d=m0, Mst=0d=1, Ajst=0d=1 for j =−sm0−1d , . . . , 0,
t1=0, and S1st=0d=m0. At time t, a new individualI t is
introduced into the community and becomes a member by
repeating the following procedures until its activity reaches
m:

• Selection: It selects a partnerI j among existing mem-
bershIk,tj with a selection probabilityPj

S.
• Creation or Joining: With a creation probabilityPj

C, it
creates a new groupGM+1 with the partnerI j. Otherwise, it
selects randomly one of the groups ofI j with an equal prob-
ability and joins it. If I t is already a member of the selected
group, then the procedure is canceled.

A specific feature of the model varies with the choice of
probabilitiesPS andPC. Regarding the selection, the simplest
is the random choice among existing members with equal
probability Pj

S=1/sm0+ t−1d. Note that the selection may be
regarded as an invitation of a new member by existing mem-
bers. It may then be natural to assume that active members
invite more newcomers. Such a case is modeled with a pref-
erential selection probabilityPj

S=Aj / sok,t Akd. After select-
ing a partnerI j, the newcomer may create a new group or
join one of I j’s groups having an equal probability. In that
case the creation probability is variable asPj

C=1/sAj +1d. In
the other case, it may create a new group with a fixed prob-
ability Pj

C=v. Combining the strategies in the two proce-
dures, we consider the four possible different growth models
denoted by RV, RF, PV, and PF. Here, RsPd stands for the
randomspreferentiald selection, and VsFd for the group cre-

ation with the variablesfixedd probability. For example, the
RF model has the selection probabilityPj

S=1/sm0+ t−1d and
the creation probability,Pj

C=1/sAj +1d. The growth rules are
summarized in Table I.

The whole structure of the community is conveniently
represented with a bipartite network of two kinds of vertices:
one for the group and the other for the member. A link exists
only from a member vertex to a group vertex to which it
belongs. The member activity and the group size correspond
to the degree of the corresponding vertex. Figure 1 shows a
typical network configuration for the RV model withm0
=m=1. To help readers understand the growth dynamics, we
add the indices for membersI i and groupsGa in the figure. It
is easily read off thatI1 selectsI0 and becomes a member of
G1 at t=1 and thatI2 opens a new groupG2 with I0 at t=2,
and so on. Figure 2 shows a configuration of a RV network
with m=m0=1 grown up to N=1000 members withM
=452 groups. It is noteworthy that there appear hub groups
having a lot of members. The emerging structure of the net-
work will be studied in the next section.

III. NETWORK STRUCTURE

The number of groupsMstd, the activity of each member
Aistd, and the size of each groupSastd increase as the net-
work grows. With those quantities, we characterize the
growth dynamics and the network structure. In the following,
we study the dynamics of those quantities averaged over net-
work realizations. For simplicity’s sake, we make use of the
same notations for the averaged quantities. The network dy-
namics implies that they evolve in time as follows:

TABLE I. Model description and mean field results for the
group size distribution exponentg. Here, QRV and QPV are the
group number growth rate given in Eqs.s8d and s17d, respectively.
The activity distribution follows a power law only for the PF model
with the exponentl=2+1/v.

R fPj
S=1/sm0+ t−1dg P fPj

S=Aj /ok,tAkg

V fPj
C=1/sAj +1dg 1+QRV

−1 1+QPV
−1

F sPj
C=vd 2/s1−vd 2/s1−vd

FIG. 1. A network for the RV model withm0=m=1 and N
=10 with six groups. The symbolsi scirclesd and a ssquaresd rep-
resent a memberI i and a groupGa, respectively.
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Aist + 1d = Aistd + mPi
SPi

C, s1d

Mst + 1d = Mstd + mo
jøt

Pj
SPj

C, s2d

Sast + 1d = Sastd + mo
jøt

Pj
Sx jas1 − Pj

Cd/Aj , s3d

wherex ja=1 if I j belongs toGa, or 0 otherwise. The initial
conditions are given byAist= id=m, Mst=0d=1, and Sast
=tad=2 with ta the creation time ofGa. We analyze the
equations in a continuum limit and in a mean field scheme,
neglecting any correlation among dynamic variables.

Firstly we consider the RV model. Using the correspond-
ing PC andPS in Table I, Eqs.s1d–s3d become

dAi

dt
=

m

sAi + 1dsm0 + td
, s4d

dM

dt
=

1

sm0 + tdojøt

m

sAj + 1d
, s5d

dSa

dt
= S 1

m0 + t
DS Sa

m0 + t
Do

jøt

m

sAj + 1d
, s6d

where we approximatex ja in Eq. s3d with Sa / sm0+ td, the
fraction of members ofGa among all members. The solution
for Aistd is given by

Aistd = − 1 +Îsm+ 1d2 + 2m lnFm0 + t

m0 + i
G . s7d

This shows that an older member with smalleri has a larger
activity and that the activity grows very slowly in time. With
the solution forA, one can easily show thato jøt m/ sAj +1d
.QRVsm0+ td for large t with

QRV=E
0

1

du
m

Îsm+ 1d2 − 2m ln u
. s8d

Hence, the average number of groups increases linearly in
time asMstd.QRVt with the group number growth rateQRV.
The group size increases algebraically as

Sastd . 2S m0 + t

m0 + ta
DQRV

. s9d

We have obtained the activity of each member and the
size of each group, which allow us to derive the distribution
functionsPasAd andPssSd for the activity and the group size,
respectively. The activity distribution function is given by
the relationPasAd=Pinsid udi /dAu with the uniform individual
distribution, Pinsid=1/sm0+ td. The differentiation can be
done through Eq.s7d, which yields that the activity distribu-
tion is bounded asPasAd=sA+1dexph−ssA+1d2−sm+1d2d /
s2mdj /m. Similarly, the group size distribution is given by
PssSd=Pastd udt /dSu with the group creation time distribu-
tion Pastd. We assume that the group creation time is distrib-
uted uniformly, which is justified with the linear growth of
M .QRVsm0+ td. Then the group size distribution follows a
power lawPssSd,S−gRV with the exponent

gRV= 1 +QRV
−1 . s10d

Note that the distribution exponent is determined by the
group number growth rateQRV.

We now turn to the PF model. With the selection and
creation probabilities, Eqs.s1d–s3d are written as

dAi

dt
=

mvAi

o
jøt

Aj

, s11d

dM

dt
= mv, s12d

dSa

dt
= s1 − vdSa

m

o
jøt

Aj

. s13d

We also took the approximationxia=Sa / sm0+ td in Eq. s3d.
Trivially, we find that the group number grows in time as
Mstd=mvt+1. ForAi andSa, one need evaluate the quantity
o jøtAj. Summing over alli both sides of Eq.s11d, one ob-
tains that oiøtsdAi /dtd=mv. Note that dsoiøtAid /dt
=oiøtsdAi /dtd+m=s1+vdm, which yields that so jøtAjd
=ms1+vdt+m0,. Hence we obtain the algebraic growth of
the activity and the group size as

FIG. 2. scolor onlined A network for the RV model withm0

=m=1 andN=1000. A squarescircled symbol stands for a group
smemberd.
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Aistd = mSms1 + vdt + m0

ms1 + vdi + m0
Dv/s1+vd

, s14d

Sastd = 2S ms1 + vdt + m0

ms1 + vdta + m0
Ds1−vd/s1+vd

. s15d

These results allow us to find the distribution functionsPasAd
and PssSd. They follow the power distributionsPasAd
,A−lPF andPssSd,S−gPF with the exponents

lPF = 2 + 1/v and gPF = 2/s1 − vd. s16d

Here we also assumed the uniform distribution ofta in Eq.
s15d, which is supported from the linear growth ofMstd
,mvt. In contrast to the RV model, both distributions follow
the power law. The exponents do not depend on the param-
eterm, but only on the group creation probabilityv.

For the PV and the RF models, the following can be
shown easily: The PV model behaves similarly to the RV
model. The group number increases linearly in time as
Mstd.QPVt with the group number growth rateQPV. Unfor-
tunately, we could not obtain a closed form expression for it.
However, if we adopt the assumption that the selection prob-
ability Pi

S is proportional toAi +1 instead ofAi, it can be
evaluated analytically as

QPV . fÎm2 + 6m+ 1 − sm+ 1dg/2. s17d

The approximation would become better for larger values of
m. The group size grows algebraically as in Eq.s9d with QPV
instead ofQRV. Therefore, the group size distribution follows
the power law with the exponentgPV presented in Table I.
The RF model also displays the power-law group size distri-
bution. The distribution exponentgRF is given in Table I.
Note thatgRF andgPF are the same. On the other hand, the
activity distribution follows an exponential distribution in the
RF and the PV models.

The origin for the power-law distribution of the group size
is easily understood. In all models considered, the size of a
group increases when one of its members invites a new
member. The larger a group is, the more chance to invite new
members it has. Therefore, there exists a preferential growth
in the group size, which is known to lead to the power-law
distribution f6g.

The activity of a member increases when a newcomer
selects it and creates a new group. When the random selec-
tion probability is adopted, such a process does not occur
preferentially for members with higher activity. It results in
an exponential-type activity distribution in the RV and RF
models. In the PV model, although the selection probability
is proportional to the activity, the creation probability is in-
versely proportional to the activity. Hence, it does not have a
preferential growth mechanism in the member activity either.
Only in the PF model, the activity growth rate is proportional
to the activity of each member. Therefore, the activity distri-
bution follows the power law only in the PF model.

The analytic mean field results are compared with numeri-
cal simulations. In simulations, we chosem0=m and all data
were obtained after the average over at least 10 000 samples.
We present the numerical data in Fig. 3. In accordance with

the mean field results, the group size distribution follows the
power law in all cases. The activity distribution also shows
the expected behavior: the power-law distribution for the PF
model and exponential-type distributions for the other mod-
els. We summarize the distribution exponents in Fig. 4. The
measured values of the distribution exponents are in good
agreement with the analytic results.

Our network models display distinct behaviors from those
bipartite networks such as the movie actor network, the sci-
entific collaboration networks, and the director board net-
work, which have been studied previously. For the first two
examples, their growth is driven only by the member verti-
ces, the actors, and the scientists, respectively. The activity
of members may increase in time. However, the group ver-
tices, the movies and the papers, respectively, are frozen dy-
namically and their sizes are bounded practically. For the last
example, both the memberssdirectorsd and the groups

FIG. 3. sad The group size distribution andsbd the activity dis-
tribution. The model parameters arem=4,1 for the RV and the PV
models, respectively. For the RF model,m=4 andv=0.6, for the
PF model,m=4 andv=0.5. The community has grown up toN
=106 and the distributions are averaged over 104 samples.

FIG. 4. sad Numerical results forg for the RV and the PV
models. The solidsdashedd curve represents the analytic mean field
results for the RVsPVd model. sbd Numerical results forg sopen
symbolsd of the RF and the PF models, and forl sfilled symbolsd of
the PF model. The solidsdashedd curve represents the analytic re-
sults forgsld in Table I.
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sboardsd may evolve in time. However, it was shown that the
group size distribution is also boundedf10g.

Our model is applicable to evolving networks with the
group structure wherein the size of a group may increase
unlimitedly. The online community is a good example of
such networks. To test the possibility, we study the empirical
data obtained from the Groups and the Cafe operated by
Yahoo and Daum, respectively. It is found in August, 2004,
that there are 1 516 750s1 743 130d groups scafesd with
76 587 494s351 565 837d cumulative members in the Yahoo
sDaumd site. The numbers of members of the groups are
available via the web sites. Figure 5 presents the cumulative
distributionP.sSd=oS8.S PssS8d of the group size. The dis-
tribution has a fat tailf24g. Although the distribution func-
tion in the log-log scale show a non-negligible curvature in
the entire range, it can still be fitted reasonably well into the
power law for a range over two decadesssee the straight
lines drawn in Fig. 5d. From the fitting, we obtain the group
size distribution exponentsgYahoo.2.8 and gDaum.2.15.
The power-law scaling suggests that the online community
may be described by our network model. Unfortunately, in-

formation on the activity distribution is not available pub-
licly. Thus, we could not compare the activity distribution of
the communities with the model results. We would like to
add the following remark: A real-world online community
evolves in time as new members are introduced and new
groups are created. At the same time, it also evolves as mem-
bers leave it and groups are closed. Those processes are not
incorporated into the model. Our model is a minimal model
for the online community, wherein the effects of leaving
members and closed groups are neglected.

IV. SUMMARY

We have introduced the bipartite network model for a
growing community with the group structure. The commu-
nity consists of members and groups, gatherings of members.
Those ingredients are represented with distinct kinds of ver-
tices. A membership relation is represented with a link be-
tween a member and a group. Upon growing, a group in-
creases its size when one of its members introduces a new
member. Hence, a larger group grows preferentially faster
than a smaller group. With the analytic mean field ap-
proaches and the computer simulations, we have shown that
the preferential growth leads to the power-law distribution of
the group size. On the other hand, the activity distribution
follows the power law only for the PF model with the pref-
erential selection probability and the fixed creation probabil-
ity ssee Table Id. We have also studied the empirical data
obtained from the online communities, the Groups of Yahoo
and the Cafe of Daum. Both communities display a power-
law distribution of the group size. It suggests our network
model be useful in studying their structure.
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