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Abstract In this chapter, we apply the theoretical framework introduced in the pre-
vious chapter to study how the modular structure of the social network affects the
spreading of complex contagion. In particular, we focus on the notion of optimal
modularity, that predicts the occurrence of global cascades when the network ex-
hibits just the right amount of modularity. Here we generalize the findings by as-
suming the presence of multiple communities and an uniform distribution of seeds
across the network. Finally, we offer some insights into the temporal evolution of
cascades in the regime of the optimal modularity.
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1 Introduction

The previous chapter reviewed the message-passing (MP) framework that can accu-
rately describe the dynamics of spreading processes, and in particular that exhibited
by the Watts threshold model [1, 2, 3]. In this chapter, we leverage the framework to
study how complex contagions are affected by the modular structure of the underly-
ing social network. In particular, we focus on the notion of optimal modularity, that
predicts the occurrence of global cascades when the network exhibits just the right
amount of modularity [4].

Modular organization, or community structure, is one of the most ubiquitous
properties of real-world networks [5, 6] and therefore it is crucial to understand how
information diffusion is affected by a modular structure. Addressing this problem
is particularly urgent when one considers spreading phenomena characterized by
complex contagion. Unlike the case of simple contagion, where modules simply
slow down the spreading, complex contagion may be either enhanced or hampered
by modular structure [7, 8]. In contrast to simple, complex contagion requires mul-
tiple exposures and those are favored within densely connected communities. At
the same time, complex contagion can be strongly hampered at the boundaries of
communities due to the lack of the sufficient connectivity needed to provide the re-
quired multiple exposures from the activated community to the yet-to-be-activated
one. The counter-intuitive phenomenon of optimal modularity arises from the clash
and compromise between these opposite tendencies.

The basic setting for our study is as follows. We assume a network of individu-
als where an individual can be in either an “active” or “inactive” state. At each time
step, an inactive node may become active if the node is surrounded by enough active
nodes. The activation condition is captured in a threshold function C (m,k) that typ-
ically depends on the degree k of a node, and the number m of its active neighbors.
Here we consider C (m,k) = H(m

k −θ), where H(x) is a Heaviside step function and
θ is a threshold value. Throughout this chapter we assume that θ is constant across
the network. Our analysis leverages the framework introduced in the previous chap-
ter. We focus our analysis only on the ensembles of random networks with arbitrary
degree distribution [9], and “message-passing” (MP) and “Tree-Like” (TL) are used
interchangeably throughout our chapter.

2 Analytical framework

2.1 Mean-field and message-passing approaches for configuration
model

As explained in the previous chapter, the steady-state fraction of active nodes ρ∞

can be estimated using Mean-Field (MF) or the Message-Passing (MP) approaches.
Assuming an underlying infinite networks with a given degree distribution pk but
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otherwise random, ρ∞ can be obtained by solving the following self-consistent equa-
tions. Using the MF approach,

ρ∞ = ρ0 +(1−ρ0)∑
k

pk

k

∑
m=0

(
k
m

)
(ρ∞)

m(1−ρ∞)
k−mC

(m
k

)
, (1)

where ρ0 is the initial fraction of seeds. This approach does not aim at describing
the evolution from one time step to the other, rather it states that at stationarity,
the density of active nodes is the sum of two contributions: the fraction of seed
nodes and expected number of nodes that have an above-the-threshold fraction of
active neighbors. This last contribution, in turn, is expressed in terms of the degree
distribution and of the density of active nodes itself.

The MP (TL) approach assumes that the underlying network is well approxi-
mated by a tree structure. To the extent to which such approximation is valid, where
each node is affected only by its children. The density of active nodes depends only
from the level of the tree where the node is, which is described by the following
formula:

qn = ρ0 +(1−ρ0)∑
k

k
〈k〉 pk

k−1

∑
m=0

(
k−1

m

)
(qn−1)

m(1−qn−1)
k−1−mC

(m
k

)
, (2)

where qn is the density of active nodes at the n-th level of the tree (q0 = ρ0). Note
that excess degree distribution is used in the place of degree distribution because
each node uses one of its link to connect to its parent and only children nodes affect
the status of the node. The final density can be calculated by focusing the root node:

ρ∞ = ρ0 +(1−ρ0)∑
k

pk

k

∑
m=0

(
k
m

)
(q∞)

m(1−q∞)
k−mC

(m
k

)
, (3)

where q∞ = limn→∞ qn. See the previous chapter for more details.

2.2 Generalization to modular networks

The MP framework can be readily generalized to modular networks by introducing
density-of-active variables for each community [3]. Consider a network with d
communities, where the connection probabilities between communities are stored
in a d×d mixing matrix e. Here ei j is the probability that a random edge connects
community i and j. Consider a node in community i and at the n+ 1 level of the
spreading tree. The probability to pick one of its active children (n-th level) can be
written as:

q(i)n =
∑ j ei jq

( j)
n

∑ j ei j
. (4)
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Eq. 2 can be extended to describe the relation between the densities in different
communitites [3].

q(i)n+1 = ρ
(i)
0 +(1−ρ

(i)
0 )∑

k

k
z(i)

k−1

∑
m=0

(
k−1

m

)
(q(i)n−1)

m(1−q(i)n−1)
k−1−mC(i)

(m
k

)
,

(5)

where z(i) =∑k kp(i)k is the mean degree of community i. This set of equations can be
solved by iteration analogously to Eq. 3. The density of active nodes at stationarity
is:

ρ∞ = ∑
i

N(i)

N
ρ
(i)
∞ . (6)

See [3] for more details.

3 Networks with two communities

Having set up the necessary tool, we now turn into investigating on how the strength
of the modular structure can affect the spreading of complex contagion. The sim-
plest setting one may consider is a network with two equally sized communities.
Given a fixed and predefined number L of links in the network, we first randomly
connect µL couple of nodes, where each member of the couple sits in a different
community. The remaining links are then used to randomly connect couple of nodes
in the same community [5]. If µ = 0, no edge is placed between the two commu-
nities (the network has two components and is therefore maximally modular); if
µ = 0.5, the network is an Erdős-Rényi random graph in the infinite size limit. A
fraction ρ0 of active nodes are set in one of the two communities, which we call
“seed community”.

As shown in [4] and illustrated in Fig. 1, the density of active nodes at stationarity
ρ∞ depends non-trivially on the degree of inter-community connectivity, showing a
maximum at intermediate values of µ .

Small values of µ allow initial spreading in the seed community, but it is es-
sential to have enough mixing (bridges) between communities to have a cascade
that significantly interests the global community. At the same time, when too many
links across community are present, since these occur at the expense of the intra-
community links, there is insufficient connectivity in the seed community to trigger
the initial diffusion of the activation. We name optimal modularity the range of µ

values for which the two mechanisms above find their trade-off to maximize the size
of the cascade.
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4 Optimal modularity in networks with many communities

A network with just two equally sized communities with all the seed users concen-
trated in one of those is an obvious starting point for this study, but, in general, a non-
realistic assumption. We generalize our finding by first considering multiple com-
munities of the same size and with the same degree of intra and inter-connectivity.
We then consider a more general process to generate the network and its modular
structure. We consider the family of graphs known as LFR (Lancichinetti-Fortunato-
Radicchi) benchmark graphs [10], which allow us to independently modulate both
the size and the degree distribution of the individual communities. We finally re-
move the constraint of having all seed nodes in a single community.

Local Spreading Global spreading No spreading

Fig. 1 The trade-off between intra- and inter-community spreading. Stronger communities (small
µ) facilitate spreading within the originating community while weak communities (large µ) pro-
vide bridges that allow spreading between communities. Blue and Red imply activation, while
white implies inactivity. There is a range of µ values that allow both (optimal). The blue squares
represents ρA

∞, the final density of active nodes in the community A, and the red circles represents
ρB

∞. The parameters for the simulation are: ρ0 = 0.17, θ = 0.4, N = 131056, and 〈k〉= 20.
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4.1 Spreading from a seed community
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Fig. 2 Optimal modularity arises even when there are many communities. The phase diagrams are
calculated using the MP framework with different number of communities. ‘nc’ refers the number
of communities. θ and z values are varied to demonstrate the existence of optimal modularity
clearly.

Figure 2 and 3 show that the qualitative behavior of ρ∞ as a function of µ and ρ0,
when there are two or more communities and the activation is iniated from a single
seed community. In general, a larger number of communities requires a smaller
adoption threshold to allow the cascade to spread over the all network; increasing
the number of communities makes the signal outgoing from the seed community less
focused. Such signal, therefore, spreads less easily from community to community.
Nevertheless, the same trade-off, and thus optimal modularity, exists between local
spreading due to clustering and inter-community spreading due to bridges.

4.2 Spreading from randomly distributed seeds

Next we consider the more general scenario in which the initial signal is distributed
across the whole network. The MP approach as described by Eqs. 4 and 5 is suffi-
ciently general to handle the scenario at hand. In particular we will have:
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Fig. 3 The behavior of threshold model in the presence of community structures generated by LFR
benchmark, with N = 25000, z = 10, t1 = 2.5 (degree exponent), t2 = 1.5 (community size expo-
nent), kmax = 30 and θ = 0.3. LFR benchmark generates more realistic networks with community
structures. The degree distribution may have a power-law distribution (with exponent t1 and degree
cutoff kmax). The size of the communities may also follow a power-law distribution (with exponent
t2).

q̄(i)n = (1−µ)q(i)n +
µ

(d−1)

d

∑
j 6=i

q( j)
n . (7)

Here d is the number of communities and, as before, µ represents the total fraction
of inter-community bridges in the network. Also, in Eq 5, ρ

(i)
0 6= 0 for all i’s rather

than just one. The equations can still be solved iterativly.
Figure 4 shows the results derived via the MP (TL) approach for a network with

25,600 nodes, 160 evenly sized communities, and seeds randomly distributed across
the network. An optimal region emerges as in the previous multi-community cases.

We would like to note that the optimal region vanishes if each community has ex-
actly same number of seeds; there is no dependence of ρ∞ on µ . The emergence of
an optimal region critically depends on the existence of variability across communi-
ties. Individual communities show a sharp transition between inactivity and activity
as the seed fraction ρo increases. As all nodes activate essentially simultaneously,
the entire system can be regarded as a random network of super-nodes, each repre-
senting a single community. The qualitative behavior is therefore the same as that of
a random network with no communities. If there is sufficient variability across the
communities, in terms of the number of seed nodes they contain then some commu-
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Fig. 4 The phase diagram of threshold model with uniformly distributed random seeds. Three
example slices are taken from the contour plot (horizontal lines) and displayed in the right figure.
N = 25,600 with C = 160 communities with 160 nodes each. The solid black line on the contour
shows the MP (TL) results.

nities will activate before others and the community structure will have a measurable
effect, as shown in Fig 4.

The effect of variability in the nodes’ threshold was actually the focus of the orig-
inal study of the linear threshold model by Granovetter [1]. He found that changes
in the variance of the threshold distribution leads to qualitatively different spread-
ing behavior even when the mean is kept constant. When variance is low, nodes
have approximately the same threshold and, all other factors being the same, they
get activated more or less simultaneously. Higher variance brings the existence of a
continuum spectrum from low to high threshold nodes. Low threshold are typically
activated first and can help the activation of nodes with slightly higher threshold.
In turn, these can contribute to activate even higher threshold nodes, and possibly
generate a large size cascade. But if threshold variance is too high, the gap between
low threshold and high threshold nodes is too large and the activation of the former
is not sufficient to fill the gap in threshold.

Given the tendency of nodes in a community to activate simultaneously, it is
possible to regard them as coarse-grained super-nodes whose threshold is effectively
determined by the number of seeds they contain. This formulation provides similar
insights as the Granovetter’s study [1]. We investigated this idea by distributing
seeds across communities according to a Beta distribution. We fix the α and β

parameters for the Beta distribution in such a way to maintain the expected value
constant at 〈ρo〉= 0.19 while the standard deviation (σ ) is varied.

Our experiments, as shown in Figure 5 produce results qualitatively similar to
those for Granovetter’s model [1].

Specifically, Fig. 5 shows that two optimal behaviors emerge, one with respect to
σ and one with respect to µ . The peak along σ arises for exactly the reasons exposed
above. A large cascade can be triggered for intermediate values of σ , when there is
a continuum spectrum of effective activation thresholds across communities. Due
to a cascading effect, increasing activity within the network makes it more likely
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Fig. 5 The phase diagram of threshold model with beta distributed random seeds. Two example
slices are taken from the contour plot (vertical lines) and displayed in the right figure. The mean
seed 〈ρo〉 = 0.19. Numerical simulations were done with N = 25600 with C = 160 communities
with 160 nodes each. The solid black line on the contour shows the MP results.

to activate communities with fewer and fewer seeds. When σ is low communities
have roughly the same number of seeds and none have enough seeds to fully activate
unless the mean number of seeds is increased. At high σ , communities with many
seeds activate, but they don’t generate enough cumulative activity to activate the low
seed communities.

The optimal region with respect to µ arises for the same trade-off to those studied
above. Low µ implies strong connectivity inside single communities, but insuffi-
cient bridges to spread the activation signal externally. For high µ there are bridges,
but not sufficient internal connectivity in order to trigger the initial activation of a
sufficiently large number of communities. An optimal balance is achieved at inter-
mediate values of µ .

5 Temporal aspects of optimal modularity

How fast a contagion can spread is often as important as how far it can spread.
Imagine, for example, the sudden availability of a prophylactic measure in the wake
of a pandemic. The issue would then be not just whether this measure can spread
broadly, but also whether it can spread sufficiently fast to effectively oppose the pan-
demic. Here we limit our study to the basic setting consisting of two communities
with varying degree of modularity (µ) and only one seed community. We measure
the total diffusion time: the number of time steps needed for the system to reach a
steady state. We run a 1,000 simulations (each with an independent network realiza-
tion) and measure the mean ρ∞ and total diffusion time. We also assume a uniform
threshold (θ = 0.4).

Figure 6 demonstrates that while ρ∞ remains constant at its maximum value, the
total diffusion time greatly varies. Close to either border of the optimal range, con-
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Fig. 6 Total diffusion time and optimal modularity. The blue symbols and line represent the total
diffusion time in the community A (seed community), and the red symbols and line represent the
total diffusion time in the community B (the other community). The optimal modularity range that
allows global cascades is represented with a purple shade. The total diffusion time curve peaks
at the two transition points, demonstrating that there exists a narrower range of µ values where
the global cascades happen, faster. The parameters for the simulation are: ρ0 = 0.17, θ = 0.4,
N = 8,192, and z = 20.

tagion significantly slows down, while the global spreading can happen fastest near
the middle of the optimal modularity regime. When there are just enough bridges
(the left border), the spreading from the seed community to the other community is
slower than the case where there are more than just enough bridges to spare (center).
Similarly, when there are just enough local cohesion (the right border), the local
spreading produces just enough newly activated nodes to achieve global cascade,
slowing down the spreading process.

6 Discussion

In this chapter, we have generalized the optimal modularity phenomena and studied
its temporal aspect. We showed that many simplifying assumption made in the orig-
inal study can be relaxed without disrupting the qualitative scenario that predicts
a maximum in the fraction of active individuals for intermediate values of inter-
community connectivity. In particular we considered the case of a large number of
communities, with heterogeneous size, and non uniform degree of initial activation.

Our experiment showed that our model behaves qualitatively same as one in
which communities can be considered as super-nodes and are characterized by dif-
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ferent threshold. This, in turn, may open the possibility to study very large system if
one could devise a strategy to compute the effective parameters of a coarse grained
model where communities are represented by single nodes. The interest in devel-
oping such ”renormalization” techniques is not only theoretical: threshold models
have found several application to real world problems, including the multi-scale
modeling of brain networks [11] and of their activation dynamics in the brain [12].
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