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We investigate the impact of community structure on information diffusion with the linear threshold
model. Our results demonstrate that modular structure may have counterintuitive effects on information
diffusion when social reinforcement is present. We show that strong communities can facilitate global
diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical
simulations, we demonstrate the existence of an optimal network modularity, where global diffusion
requires the minimal number of early adopters.
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The study of information diffusion—fads, innovations,
collective actions, viral memes—is relevant to a number of
disciplines, including mathematical, physical, and social
sciences, communication, marketing, and economics [1–6].
The most common approach is to focus on the affinities
between information diffusion and infectious diseases
spreading [7,8]: a piece of information can travel from
one individual to another through social contacts and the
“infected” individuals can, in turn, propagate the informa-
tion to others, possibly generating a large-scale diffusion
event similar to an epidemic outbreak [9,10]. In addition to
classical epidemic models, two main types of information
diffusion models have been proposed: the independent
cascade model, which was initially adopted to study the
dynamics of viral marketing [11–15], describes information
diffusion as a branching process; the threshold model,
originally proposed to study collective social behavior
[2,16–18], incorporates the idea of “social reinforcement”
by assuming that each adoption requires a certain number
of exposures. Although it is not yet fully understood how
the microscopic mechanisms underlying information dif-
fusion differ from those in epidemic spreading, it has been
pointed out that social reinforcement could be a crucial one:
unlike epidemic spreading, where each exposure acts
independently, social reinforcement provisions that each
additional exposure to a piece of information sensibly
increases the probability of its adoption [19–21].
Since information spreads through social contacts, the

structure of the underlying social network is a crucial
ingredient in modeling information diffusion. The role of
hubs and degree distribution have been studied extensively
due to their critical role in epidemic spreading [22–24].
Another obvious network feature that has implications on
information diffusion is the presence of a modular struc-
ture. Several studies investigated the role of communities in
information diffusion [25–30], mostly ignoring the effect of
social reinforcement.
Epidemic spreading is hindered by the presence of

communities or modular structure, since this helps confining

the epidemics in the community of origin [25,31]. This may
naturally lead to the expectation that the same is true for
information diffusion, given the similar approaches used in
modeling epidemic and information diffusion. However,
recent empirical work suggested that modular structure
may, counterintuitively, facilitate information diffusion
[21]. Other studies also proposed that network modularity
plays a more important role in information diffusion than in
epidemic spreading [6,19,32]. These findings reinforce the
need to systematically explore how mechanisms like social
reinforcement interact with the ubiquitous presence of
modular structure in the underlying network.
In this Letter, we use the linear threshold model—which

incorporates the simplest form of social reinforcement—to
systematically study how community structure affects
global information diffusion. It is worth stressing that both
cooperative interactions (as those provisioned by social
reinforcement) and modular structure are common in a
variety of phenomena. The results described here could be,
therefore, directly relevant in several different areas.
Examples include neural networks [33], systems with
Ising-like dynamics evolving on a nonhomogeneous sub-
strate [34], and more in general, in the study of phenomena
that can be interpreted in terms of spreading.
Here, we expose two roles played by modular structure:

enhancing local spreading and hindering global spreading.
Strong communities facilitate social reinforcement and,
thereby, enhance local spreading [6,21]; weak community
structure makes global spreading easier, because it provides
more bridges among communities. We show that there
exists an optimal balance between these two effects, where
community structure counterintuitively enhances—rather
than hinders—global diffusion of information. This draws a
parallel with the “small world” phenomenon, where the
presence of a small number of shortcuts greatly reduces the
average path length of the network while maintaining high
clustering [35]. In information diffusion, a small number of
bridges between communities allows intercommunity dif-
fusion while maintaining intracommunity diffusion.
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We adopt the linear threshold model to account for recent
observations and experiments that demonstrated the impact
of social reinforcement in information diffusion [6,19–21].
Let us formally define the linear threshold model first.
Consider a set of N nodes (agents) connected by M
undirected edges. The state of an agent i at time t is
described by a binary variable siðtÞ ¼ f0; 1g, where 1
represents the “active” state and 0 the “inactive” one. At
time t ¼ 0, a fraction ρ0 of randomly selected agents, or
“seeds,” is initialized in the active state. At each time step,
every agent’s state is updated synchronously according to
the following threshold rule:

siðtþ 1Þ ¼
�
1 if θki <

P
j∈N ðiÞ sjðtÞ;

0 otherwise;

where θ is the threshold parameter, ki is the degree of node
i, and N ðiÞ the set of i’s neighbors. This rule implies that
(i) the dynamics is deterministic, (ii) once a node becomes
active, it will remain so forever, and (iii) if siðtþ 1Þ ¼ siðtÞ
for all nodes, then the system is in a steady state. The linear
threshold model exhibits various critical behaviors. For
instance, there is a critical threshold parameter at which a
single active node can trigger a macroscopic cascade [17];
there also exists a sharp transition, at a constant threshold
parameter, from an inactive state where no diffusion occurs,
to an active state with global diffusion, triggered at a critical
fraction of initially active nodes [36]. In the following, we
focus on the latter transition based on the number of seeds
and let θ remain constant.
To systematically investigate the impact of community

structure, we prepare an ensemble of networks with two
communities with a varying degree of strength, using the
block-model approach [37–39]. First, half of the nodes are
randomly selected and assigned to community A, and the
other half are assigned to community B. Then, ð1 − μÞM
links are randomly distributed among node pairs in the
same community and μM are randomly distributed among
node pairs that belong to different communities (see Fig. 1).
The parameter μ controls the strength of the community
structure: a large value of μ yields more links between the
two communities and, thus, a weak community structure.
Finally, we plant the seeds in A, assuming that the diffusion
originates from the community A.

Let us introduce two analytic approaches—mean-field
(MF) and tree-like (TL) approximations—to understand the
behavior of our system. We first assume that the underlying
network has a given degree distribution pðkÞ but is,
otherwise, random. We aim to compute the final density
of active nodes (ρ∞) given the initial density of seeds (ρ0).
When there is no community structure, using the mean-
field approximation, ρ∞ can be computed as the smallest
stable solution of the equation

ρ∞ ¼ ρ0 þ ð1 − ρ0Þ
X∞
k¼1

pðkÞ
Xk

m¼⌈θk⌉

�
k
m

�
ρm∞ð1 − ρ∞Þk−m:

ð1Þ
The probability that a node of degree k is in the active state at
stationarity is the sum of two contributions (i) the probability
that the node is active at t ¼ 0 (ρ0), and (ii) the probability
that the node is not active at t ¼ 0 (1 − ρ0) but has at least θk
active neighbors at t ¼ ∞ (the second summation). The sum
over k accounts for the different degrees a node may have.
The equation can be solved iteratively.
Now, let us extend Eq. (1) to deal with networks with

communities. While it is easy to generalize it for arbitrary
configurations of communities, here, we focus on the case
with two communities. In such a case, the equations for the
fraction of active nodes ρA (respectively, ρB) in the
community A (respectively, B) can be written as

ρAðBÞ∞ ¼ ρAðBÞ0 þ ð1 − ρAðBÞ0 Þ
X∞
k¼1

pðkÞ

×
Xk

m¼⌈θk⌉

�
k
m

�
ðqAðBÞÞmð1 − qAðBÞÞðk−mÞ; ð2Þ

where ρAðBÞ0 is the density of seeds in the community AðBÞ,
and qAðBÞ ¼ ð1 − μÞρAðBÞ∞ þ μρBðAÞ∞ is the probability that a
neighbor of a node is active, which is the sum of (i) the
probability that the neighbor is in the same community

ð1 − μÞ and is active (ρAðBÞ∞ ), and (ii) the probability that it is

in the other BðAÞ community (μ) and is active (ρBðAÞ∞ ).
Finally, ρ∞ ¼ ðρA∞ þ ρB∞Þ=2.
A more sophisticated framework adopts the TL approxi-

mation [26,40]. It approximates the underlying network
with a tree of infinite depth and assumes that the nodes at
level n are only affected by those at level n − 1. The
fraction of active nodes in community AðBÞ is computed
using an auxiliary variable yAðBÞ∞ obtained by the following
iteration over all the levels in the tree

yAðBÞnþ1 ¼ ρAðBÞ0 þ ð1 − ρAðBÞ0 Þ
X
k

k
z
pðkÞ

×
Xk−1

m¼⌈θk⌉

�
k − 1

m

�
ðȳAðBÞn Þmð1 − ȳAðBÞn Þk−1−m; ð3Þ

FIG. 1. Example of networks with different degrees of cluster-
ing μ (0.03, 0.12, and 0.3 from left to right, respectively).
Parameters values are set to N ¼ 100, M ¼ 750, and
n ¼ 2.
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where z is the average degree and ȳAðBÞn ¼
ð1 − μÞyAðBÞn þ μyBðAÞn . The fraction of active nodes is
given by

ρAðBÞ∞ ¼ ρAðBÞ0 þ ð1 − ρAðBÞ0 Þ
X∞
k¼0

pðkÞ

×
Xk

m¼⌈θk⌉

�
k
m

�
ðyAðBÞ∞ Þmð1 − yAðBÞ∞ Þk−m: ð4Þ

Now, we address the issue of how communities affect
information diffusion by first highlighting the trade off due
to the strength of communities. As μ decreases, nodes in A
have increasingly more neighbors in A. Thus, the number
of seed nodes to which nodes in A are exposed also
increases because the seeds exist only in A (ρA0 ¼ 2ρ0
and ρB0 ¼ 0). In other words, strong communities enhance
local spreading. By contrast, the spreading in community B
is triggered entirely by the nodes in A, as ρB0 ¼ 0.
Therefore, larger μ (smaller modularity) helps the spreading
of the contagion to community B. The fact that large
modularity (smaller μ) facilitates the spreading in the
originating community, but small modularity (larger μ)
helps intercommunity spreading, raises the following
question: is there an optimal modularity that facilitates
both intracommunity and intercommunity spreading?
Figure 2 demonstrates that there is, indeed, a range of

values of μ that enables both. In the blue range (“local”),
strong cohesion allows intracommunity spreading in the
originating community A; in the red range (“global”), weak
modular structure allows intercommunity spreading from A
to B. The interval where blue and red overlap (purple,
“optimal”) provides the right amount of modularity to
enable global diffusion. Here, the modularity is large

enough to initiate the local spreading and small enough
to induce intercommunity spreading. If μ is too small, the
contagion cannot propagate into B, even if A is fully
saturated, because there are not enough intercommunity
bridges. If μ is too large, although there are enough bridges,
ρB∞ ≃ 0 because the modularity is too small to initiate
intracommunity spreading from A.
Let us analyze the issue in more detail. Figure 3

summarizes our results, derived analytically by MF and
TL approximations, and by numerical simulations. In our
numerical simulations, we compute the mean of ρ∞ across

FIG. 2 (color online). The tradeoff between intracommunity
and intercommunity spreading. Stronger communities (small μ)
facilitate spreading within the originating community (local),
while weak communities (large μ) provide bridges that allow
spreading between communities (global). There is a range
of μ values that allow both (optimal). The blue squares represent
ρA∞, the final density of active nodes in the community A,
and the red circles represent ρB∞. The parameters for the
simulation are ρ0 ¼ 0.17, θ ¼ 0.4, N ¼ 131056, and
z ¼ 20.

FIG. 3 (color online). (a) Phase diagram of the threshold model
in the presence of community structures with N ¼ 131 056,
z ¼ 20, and θ ¼ 0.4. There are three phases: no diffusion (white),
local diffusion that saturates the community A (blue, light-gray),
and global diffusion (red, dark-gray). The dotted and dashed lines
indicate the values of ρ0 shown in (b) and (c). (b) Cross sections
of the phase diagram [dotted lines in (a)]. TL approximations
(solid lines) show excellent agreement with the simulation while
MF approximations (dotted lines) overestimate the possibility of
global diffusion. (c) Cross sections represented by dashed
lines in (a).
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1000 runs of the model, each assuming a different
realization of the network and of the seed nodes. We fix
the threshold (θ ¼ 0.4) throughout all simulations. We
discuss the effect of threshold and other parameters,
including number of communities and more general degree
distributions in the Supplemental Material [41].
Figure 3(a) shows the phase diagram with three phases:

no diffusion (white), local diffusion (blue, light-gray), and
global diffusion (red, dark-gray). As expected, a cross
section for μ ¼ const shows that ρ∞ is an increasing
function of ρ0. The system undergoes a sharp transition
for a broad range of values of μ, including the case in which
communities are absent (μ ¼ 1=2) [36]. The behavior of ρ∞
as a function of μ is more interesting, in that it exhibits
qualitatively different patterns depending on ρ0.
Figures 3(b) and 3(c) illustrate a set of possible scenar-

ios, using both numerical simulations and analytic calcu-
lations. For small values of ρ0 (black, ρ0 ¼ 0.10), nodes are
hardly activated even in the originating community; the
activation essentially fails to propagate, regardless of μ. By
increasing ρ0 (blue, ρ0 ¼ 0.13), one reaches a threshold
where the contagion can spread to the whole originating
community if μ is sufficiently small. However, when a
critical value of μ is exceeded, the internal connectivity
becomes insufficient to spread the contagion to the whole
originating community. As the originating community is
not saturated, the diffusion does not spread to the other
community as well. In this situation, there is no overlap
between the blue and red area in Fig. 2.
A larger value of ρ0 (red, ρ0 ¼ 0.17) finally allows the

global diffusion. The range of values of μ that allows full
activation in the originating community is even further
extended (fewer internal links are needed), until a sufficient
number of links can be spared to induce full activation in
the second one. If, however, the number of intracommunity
links becomes too small (large μ), the activation fails to
spread in the originating community, and therefore, it
cannot be transmitted over the entire network, despite
the increased number of cross-community links. The above
reflects in a finite, intermediate range of community
strength that allows global spreading.
Even larger values of ρ0 (red and magenta) simply extend

the range of μ for which the activation of the entire network
is achieved. When ρ0 becomes larger than the critical value
for the transition in networks without communities,
increasing μ never blocks the local spreading, and thus,
the global diffusion always happens as long as the network
has enough bridges. Notice that ρ∞ is always larger for
intermediate values of μ with respect to the no-community
case (μ ¼ 1=2), and indeed, full activation can be obtained
in an ample set of values of ρ0 if μ is properly chosen. The
smallest value of μ that allows full activation of the second
community is essentially independent of ρ0, if ρ0 is
sufficiently large: once the first community is fully active,
it is only a matter of providing sufficient external links;

therefore, the precise value of ρ0 does not matter.
Specifically, using the TL formulation and the present
value of θ, we obtained that μc ≃ 0.2175 requires the
minimal amount of seeds compatible with global diffusion.
The value of μ for which the decay of ρ∞ sets in, instead,
results from not having sufficient internal links to achieve
full activation of the originating community given the
initial seed. The value of μ depends, therefore, on ρ0.
Although, here, we present results only for the case of

random networks with two communities and a specific
value of θ, our results are more general. In the
Supplemental Material [41], we provide evidence that
our results are robust under changes in the number of
communities and assuming degree distributions more
general than that induced by the random arrangement of
links described above. Our results include experiments run
on Lancichinetti-Fortunato-Radicchi benchmark graphs
[38] that provision for a power law degree distribution
both for the degree and the size of multiple communities. It
is also worth stressing that both the MF and TL methods are
flexible enough to handle arbitrary (and community-
specific) degree distributions, and arbitrary intercommunity
connectivity patterns. To adapt MF to this general case, one
would need to replace [e.g., in the equation for ρA∞ in
Eq. (2)] pðkÞ with the specific degree distribution of
community A and qA with

P
J∈CpAJρ

J
∞, where C is the

set of communities and pAJ is the probability that a link
departing from a node in A ends in J. In the Supplemental
Material [41], we also provide evidence that our results are
qualitatively unchanged by varying the system size N, the
average degree z, and other parameters. Finally, our results
are also robust for changes in the threshold θ for a pretty
wide range of values (see Supplemental Material [41]).
In summary, our analysis shows that there exists an

optimal strength of community structure that facilitates
global diffusion. We demonstrate that the presence of the
right amount of community structure may, counterintui-
tively, enhance the diffusion of information rather than
hinder it. A tight community, with its high level of internal
connectivity, can act as an incubator for the localized
information diffusion and help to achieve a critical mass.
Information can then spread outside the community effec-
tively as long as sufficient external connectivity is guar-
anteed. Our results enrich the growing body of literature
that stresses the influence of the community structure in a
large number of processes, including epidemics, viral
marketing, opinion formation, and information diffusion.
Our findings can be generalized, and offer insights for
understanding recent empirical observations, such as the
counterintuitive behavior of information diffusion in clus-
tered networks [21], or the strong link between viral memes
and the community structures in Twitter [6,32]. Further
work is needed to understand how our observations hold if
different mechanisms of transmission are considered, or a
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richer and more complex organization of communities is
assumed.
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