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Human migration and mobility drives major societal phenomena including epidemics,
economies, innovation, and the diffusion of ideas. Although human mobility and
migration have been heavily constrained by geographic distance throughout the
history, advances, and globalization are making other factors such as language and
culture increasingly more important. Advances in neural embedding models, originally
designed for natural language, provide an opportunity to tame this complexity and open
new avenues for the study of migration. Here, we demonstrate the ability of the model
word2vec to encode nuanced relationships between discrete locations from migration
trajectories, producing an accurate, dense, continuous, and meaningful vector-space
representation. The resulting representation provides a functional distance between
locations, as well as a “digital double” that can be distributed, re-used, and itself
interrogated to understand the many dimensions of migration. We show that the
unique power of word2vec to encode migration patterns stems from its mathematical
equivalence with the gravity model of mobility. Focusing on the case of scientific
migration, we apply word2vec to a database of three million migration trajectories
of scientists derived from the affiliations listed on their publication records. Using
techniques that leverage its semantic structure, we demonstrate that embeddings can
learn the rich structure that underpins scientific migration, such as cultural, linguistic,
and prestige relationships at multiple levels of granularity. Our results provide a
theoretical foundation and methodological framework for using neural embeddings
to represent and understand migration both within and beyond science.

neural embedding | mobility | migration | word2vec | bibliometrics

How far apart are two places? The question is surprisingly hard to answer when it involves
human migration and mobility. Although geographic distance has historically constrained
human movements, it is becoming less relevant in a world increasingly interconnected by
rapid communications and travel. For instance, a person living in Australia is more likely
to migrate to the United Kingdom, a far-away country with similar language and culture,
than to a much closer country such as Indonesia (1). Similarly, a student in South Korea
is more likely to attend a university in Canada than one in neighboring North Korea (2).
Although geographic distance has been used as the most prominent basis for models of
migration and mobility, such as the gravity (3) and radiation (4) models, the diminishing
relevance of geography calls for alternative ways of conceptualizing “distance” (5–7).

Yet, functional distances are often low-resolution, computed at the level of countries
rather than regions, cities, or organizations, and have focused on only a single facet
of migration at a time. By contrast, real-world migration is multi-faceted, influenced
simultaneously by geography, language, culture, history, and economic opportunity.
Low-dimensional distance alone cannot represent the multitude of inter-related factors
that drive migration. Although networks have been explored as a solution to representing
many dimensions of migration, edges only encode simple, dyadic relationships between
connected entities. Capturing the complexity of migration requires moving beyond
simple functional distances and networks, to learning high-dimensional landscapes of
migration that incorporate many facets of migration into a single fine-grained and
continuous representation. Such a representation can be used not only to measure
distances at multiple scales but also to act as a convenient “digital double,” an entire
functional topology that can be distributed, incorporated into future analyses, and itself
interrogated to reveal fundamental insights into patterns of global migration.

Here, we demonstrate that the word2vec model (Skip-Gram Negative Sampling) (8)
is equivalent to the gravity law of mobility, a fundamental framework used to model
migration across many domains. We then empirically test the resulting representation by
its ability to derive the functional distances between locations from migration trajectories.
After validating its accurate representation of real-world data, we apply a variety of
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techniques that leverage the unique and powerful semantic
structure of the embedding space to study scientific migration.
Doing so demonstrates word2vec’s capacity to encode rich
information related to geography, culture, language, and even
prestige, at multiple scales of analysis.

While the word2vec model shown here can be applied across
domains of migration, here we demonstrate its applicability by
applying it to study scientific migration. Scientific migration is
a central driver of the globalized scientific enterprise (9, 10) and
it is strongly related to innovation (11, 12), impact (13, 14),
collaboration (15), and the diffusion of knowledge (11, 16). Re-
searchers migrate between organizations as they attain new roles
throughout their careers, often motivated by the desire to expand
their professional networks (17), to gain access to prestigious
institutions (18), to gain entry into high-performing research
groups (19), or to obtain resources for research (20). Their choice
of destination is however constrained by many factors, including
rigid prestige hierarchies that shape faculty hiring (21, 22),
language (23), visa and immigration policies (24), and family
considerations (19, 25). In spite of its importance, holistic
understandings of global scientific migration have been limited
by the sheer scope and complexity of the phenomenon (22, 26),
being further confounded by the diminishing role of geography in
shaping the landscape of scientific migration. Its known structural
properties combined with the difficulty of its study at scale
make scientific migration the ideal case study for application
of word2vec.

Trajectories of scientific migration are constructed using
more than three million name-disambiguated authors who were
mobile—having more than one affiliation—between 2008 and
2019, as evidenced by their publications indexed in the Web of
Science database (27) (Materials and Methods). As a scientist’s
career progresses, they move between organizations or pick up
additional (simultaneous) affiliations forming affiliation trajecto-
ries (Fig. 1A). Thus, the trajectories encode both migration and
co-affiliation—the holding of multiple simultaneous affiliations
involving the sharing of time and capital between locations—
that is typical of scientific migration (13, 15) (SI Appendix). This
particular intricacy of scientific migration further illustrates how
word2vec can be applied to even the most complex domains. We
also apply this technique to U.S. passenger flight itinerary records
and Korean accommodation reservations (Detailed descriptions

are available in Materials and Methods) in order to demonstrate
its applicability to incredibly distinct domains of migration and
mobility.

Here, we study the skip-gram negative sampling (SGNS), or
word2vec neural-network architecture (Materials and Methods).
This neural embedding model, originally designed as a language
model (8), made breakthroughs by revealing novel insights
into texts (28–33), networks (34–36) and trajectories (37–42).
It works under the notion that a good representation should
facilitate prediction, learning a mapping between words can
predict a target word based on its context (surrounding words).
The model is also computationally efficient, robust to noise, and
can encode relations between entities as geometric relationships
in the vector space (30, 33, 43–45). When applied to the
trajectory data, each location is encoded into a vector space, and
vectors relate to one another based on the likelihood of locations
appearing adjacent to one another in the same trajectory. Also,
word2vec can be interpreted as a kind of metric recovery, which
recovers the underlying metric of the semantic manifold (45).
Although more sophisticated embedding techniques (46, 47),
some adapted toward migration data (47–51), have been de-
veloped, the standard word2vec remains a powerful model for
representing migration data, owing to its simplicity, intuitiveness,
and accessibility. Establishing a theoretical and methodological
foundation for word2vec is essential for better understanding and
application of other more sophisticated models.

The gravity model framework (3) is a widely used, fundamental
migration model (52–55) that connects the expected flux, T̂ij,
between locations based on their populations and distance:

T̂ij = Cmimjf (rij), [1]

where mi is the population of location i, f (rij) is a decay function
with respect to distance between locations, and C is a constant
estimated from data (Materials and Methods). Here, we use the
mean annual number of unique mobile and non-mobile authors
who were affiliated with each organization. T̂ij or “expected
flux” (4), as the expected frequency of the co-occurrence of
location i and j in the trajectory in the gravity model.

The gravity model posits that the expected flow, T̂ij, (T̂ij =
T̂ji), is proportional to the locations’ population, T̂ij ∝ mimj,
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Fig. 1. Neural embedding provides functional dis-
tance that improves predictive power of the gravity
model of migration best across three distinct human
trajectory datasets. (A) A unique identifier is assigned
to each organization and they are assembled into an
affiliation trajectory ordered by year of publication
(Top). If an author lists multiple organization affiliations
within the same year, we shuffle the order within that
year in each training iteration (Bottom, see SI Appendix).
(B) Embedding distance better explains the expected
flux of global scientific migration than does geographic
distance (C). The red line is the line of the best fit.
Black dots are mean flux across binned distances. The
99% CIs are plotted for the mean flux in each bin.
Correlation is calculated on the data in the log-log
scale (P < 0.0001 across all fits). The lightness of each
hex bin indicates the frequency of organization pairs
within it. (D) Predictions of flux between institutions
made using embedding distance outperform those
made using geographic distance (E). Box-plots show
the distribution of actual flux for binned values of
predicted flux. Box color corresponds to the degree

to which the distribution overlaps with y = x. “RMSE” is the root-mean-squared error between the actual and predicted values. Embedding distance consistently
produces powerful functional distance for U.S. flight itineraries and Korean accommodation reservations (SI Appendix).
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and decays as a function of their distance, f (rij). Traditionally,
the decay function has been defined in terms of geographic
distance, due to its intuitiveness and availability. Here, we also
consider the embedding distance, calculated as the cosine distance
between location vectors modeled by word2vec, to test the ability
to encode migration data. The decay function f (rij) defines the
effect of distance, and different decay functions can model funda-
mentally different mechanisms (56) such as the cost functions for
a given distance and the spatial granularity of the observation. For
geographic distance, we define f (rij) as the standard power-law
function, and for the embedding distance, we use the exponential
function, selected as the best performing for each case (see SI
Appendix, Figs. S10 and S11 for more information).

Results
word2vec and the Gravity Model. We first demonstrate the
mathematical equivalence between the SGNS model and the
gravity model. The word2vec model takes a location trajectory,
denoted by (a1, a2, . . . , aT ), as input. A target location at = i
is considered to have a context location at ′ = j that appears
in the previous or subsequent w locations in the trajectory,
i.e., j ∈ [at−w, . . . , at−1, at+1, . . . , at+w]. word2vec learns an
embedding by estimating the probability that location i has
context j:

P (j | i) :=
exp(uj · vi)

Zi
, [2]

where the denominator Zi =
∑

j′∈A exp(uj′ · vi) is a normaliza-
tion constant, andA is the set of all locations. Although word2vec
generates two embedding vectors vi and ui—referred to as the in-
vector and out-vector, respectively—we follow convention to use
the in-vector vi as an embedding of location i. Training word2vec
is computationally expensive because of Zi that extends over all
|A| locations.

Negative sampling is a widely used heuristic to efficiently train
word2vec without explicitly calculating Zi. Negative sampling
was introduced as a simplified version of Noise Contrastive
Estimation (NCE) (8, 57). We show that this simplification
gives rise to a biased estimator, which subsequently lead to the
equivalence between SGNS word2vec and the gravity model.

NCE is a generic estimator for probability model (57)

Pm(x) =
f (x)∑

x′∈X f (x′)
, [3]

where f is a positive real-valued likelihood function of data x, and
X is the set of all data. Note that word2vec belongs to this class
of probability models, with x = ui · vj and f (x) = exp(x). To
train word2vec with NCE (8), one samples a center-context pair
(i, j) from the given data and labels the pair as Y = 1. Then, one
replaces the context location j with a random location j′ sampled
from a noise distribution p0(j′) and labels the pair as Y = 0.
NCE finds the embedding that can classify the center-context
pairs using a logistic function (SI Appendix)

PNCE (Yj = 1|j
)

=
1

1 + exp
[
− ln f (uj · vi) + ln p0(j)

] , [4]

by maximizing the log-likelihood

J NCE =
∑
i∈A

∑
j∈D

[
Yj log PNCE(Yj = 1|j)

+ (1− Yj) log PNCE(Yj = 0|j)
]
. [5]

Note that NCE is an unbiased estimator that has asymptomatic
convergence to the optimal embedding in terms of the original
word2vec’s objective function, J (57, 58). Let us revisit negative
sampling from the perspective of NCE. Negative sampling
simplifies NCE by dropping ln p0(j) in the logistic function,
i.e.,

PNS(Yj = 1; vi, uj) =
1

1 + exp(−uj · vi)
. [6]

Despite its innocuous appearance, this simplification produces
substantial biases. To see this, we rewrite PNS in the form of
PNCE as

PNS (Yj = 1|j
)

=
1

1 + exp
[
−
(
uj · vi + ln p0(j) + c

)
+ ln p0(j) + c

] , [7]

=
1

1 + exp
[
− ln f (uj · vi) + ln p0(j) + c

] , [8]

where we define the likelihood function f by

f (uj · vi) = exp
(
uj · vi + ln p0(j) + c

)
, [9]

which is the unbiased estimator for the probability model

PNS
m (uj · vi) =

f (uj · vi)∑
j′∈A f (uj′ · vi)

, [10]

=
p0(j) exp(uj · vi)∑

j′∈A p0(j′) exp(uj′ · vi)
, [11]

=
P(j) exp(uj · vi)∑

j′∈A P(j′) exp(uj′ · vi)
[12]

(∵ p0(`) ∝ P(`)),

where P(`) is the  power of the frequency of the location `.
Taken together, the conditional probability that SGNS

word2vec actually optimizes is

PNS(j | i) = PNS
m (uj · vi) =

P(j) exp(uj · vi)
Z ′i

, [13]

where Z ′i =
∑

j′∈A P(j′) exp(uj′ · vi). Eq. 13 clarifies the bias
due to negative sampling, i.e., the noise distribution p0(j) =
P(j) appears in the numerator and, thus, is a part of the
word2vec model.

Armed with this result, we can now show the equivalence
between the SGNS word2vec model and the gravity model. We
set the window length to w = 1 to restrict word2vec to predict
the first-order flux T̂ij between locations, as is the case for the
gravity model. Parameter  = 1 is a special choice that ensures
that, when the embedding dimension is sufficiently large, there
exists optimal in-vectors and out-vectors such that vi = ui (43).
By setting  = 1, we have

T̂ij ∝ P(i)PNS(j | i) ∝
P(i)P(j) exp(uj · ui)

Zi
. [14]
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The flow T̂ij is symmetric (i.e., T̂ij = T̂ji) because the skip-gram
model neglects whether the context j appears before or after the
target i in the trajectory which produces

Tij = Tji ⇐⇒
P(j)f (uj · ui)

Zi
P(i) =

P(i)f (ui · uj)
Zj

P(j)

⇐⇒
1
Zi

=
1
Zj

⇐⇒ Zi = Zj, [15]

Taken together, the word2vec model with the negative sampling
predicts a flow in the same form as the gravity model:

T̂ij = CP(i)P(j) exp(vj · vi). [16]

In other words, with large-enough dimensions and embedding
optimally converges, word2vec with skip-gram negative sampling
is mathematically equivalent to the gravity model, with the mass
given by the location’s frequency P(i), and the distance measured
by their dot similarities. While the gravity model describes
migration flows from the given mass and locations, word2vec
estimates the positions in the vector space that best explain the
given migration flow.

We further demonstrate word2vec’s capacity to effectively
represent gravity-like relationships with a synthetic benchmark.
Namely, we train a word2vec model using synthetic migration
trajectories that strictly adhere to the gravity model (see SI
Appendix for details). We find that distances in the embedding
space strongly correlate with distances in the synthetic space
which was explicitly structured according to the gravity model
(Pearson correlation of 0.943 and 0.801, depending on the
distance metric used; SI Appendix, Fig. S4). Our results align with
a previous study about word2vec’ metric discovery capacity (45).

Embeddings Provide Functional Distance between Locations.
To ensure that word2vec learns an accurate representation of
migration that encodes meaningful functional distances, we
devise an empirical validation task. Here, we expect that an
accurate representation of the migration data should provide
a functional distance that better models the flux between insti-
tutions than does geographic distance and other representation
methods. We test this notion using three datasets representing
different domains of human migration and mobility, showing
that word2vec consistently offers a better representation of actual
migration flows than geographic distance, or alternative network
and direct optimization approaches.

In the case of scientific migration, the embedding distance
explains more than twice the expected flux (R2 = 0.48, Fig. 1B)
than does the geographic distance (R2 = 0.22, Fig. 1C ), and
predictions made using the embedding distance outperform
those using the geographic distance (Fig. 1 D and E). These
patterns hold for the subsets of only domestic (within-country
organization pairs, SI Appendix, Figs. S10 and S12C ) and only
international migration flows (across-country organization pairs,
SI Appendix, Fig. S12D). We also find that the embedding
distance outperforms a generalized version of the gravity model,
which incorporates information on shared geography and lan-
guage alongside geographic distance (SI Appendix).

Similarly, the embedding distance explains more than twice
the expected flux between airports (R2 = 0.51, SI Appendix,
Fig. S6A) than does geographic distance (R2 = 0.22, SI Appendix,
Fig. S6B), which has traditionally been used to quantify distance

for the gravity model. Also, the embedding distance produces
better predictions of actual flux between airports than does the
geographic distance SI Appendix, Fig. S6 C and D). In the case of
Korean accommodation reservations, embedding distance better
explains the expected flux (R2 = 0.57, SI Appendix, Fig. S6E)
than does geographic distance (R2 = 0.25, SI Appendix,
Fig. S6F ), and predictions made using the embedding distance
outperform those made with geographic distance (SI Appendix,
Fig. S6 G and H ).

The embedding distance also out-performs alternative
diffusion-based network distance measures including the per-
sonalized Page Rank scores calculated from the underlying
migration network (SI Appendix, Figs. S8, S14, and S15).
The embedding distance derived from neural embedding also
explains more of the flux and better predicts migration flows
than simpler embedding baselines, such as distances derived
from a singular-value decomposition and a Laplacian Eigenmap
embedding (59) of the underlying location co-occurrence matrix,
Levy’s symmetric word2vec (43), and even direct optimization
of the gravity model (SI Appendix, Fig. S8 and Tables S3–S5).

In sum, our results demonstrate that, consistently and effi-
ciently, the embedding distance better captures patterns of actual
migration than does the geographic distance. The embedding
distance also outperforms alternatives in terms of the common
part of commuters measure (60) (SI Appendix, Fig. S16).

In practice, because of noise, limited amounts of data, and
imperfect optimization, the equivalence may only approximately
hold. Indeed, we find that the in- and out-vectors tend to be
different and that the cosine similarity tends to better capture
real-world migration than the inner product similarity. This
result echoes other applications of word embedding, such as word
analogy testing (61), in which cosine distance also outperformed
the inner product similarity. Nevertheless, a model with the
inner product similarity has the second-best performance after
cosine similarity (SI Appendix, Tables S3–S5), and the embedding
distance still outperforms all alternatives we considered.

Embeddings Capture the Global Structure of Migration. In the
remainder of the paper, we focus on scientific migration as a
case study to interrogate the geometric space generated by the
neural embedding. In the process, we also study the multi-faceted
relationships between scientific organizations. To explore the
topological structure of the embedding, we use a topology-based
dimensionality reduction method [UMAP (62)] to obtain a two-
dimensional representation of the embedding space (Fig. 2A). By
leveraging the unique characteristics of representation learning
approach, we are able to show the relationships between
individual organizations, rather than aggregates such as nations
or cities, producing the largest and highest resolution “map” of
scientific migration to date.

Globally, the geographic constraints are conspicuous; organi-
zations tend to form clusters based on their national affiliations
and national clusters tend to be near their geographic neighbors.
At the same time, the embedding space also reflects a mix
of geographic, historic, cultural, and linguistic relationships
between regions much more clearly than alternative network
representations (SI Appendix, Fig. S17) that have been common
in studies of scientific migration (9, 63).

The embedding space also allows us to zoom in on subsets
and re-project them to reveal local relationships. For example,
re-projecting organizations located in Western, Southern, and
Southeastern Asia with UMAP (Fig. 2B) reveals a gradient
of countries between Egypt and the Philippines that largely
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Fig. 2. Projection of embedding space reveals complex multi-scale structure of organizations. (A) UMAP projection (62) of the embedding space reveals
country-level clustering. Each point corresponds to an organization and its size indicates the average annual number of mobile and non-mobile authors
affiliated with that organization from 2008 to 2019. Color indicates the region. The separation of organizations in Quebec and the rest of Canada is highlighted.
(B) Zooming into (re-projecting) the area containing countries in Western, South, and Southeast Asia shows a geographic and cultural gradient of country
clusters. (C) Similarly, zooming into the area containing organizations in Spain, Portugal, South, and Central America shows clustering by most widely spoken
majority language group: Spanish and Portuguese. (D) Doing the same for organizations in the United States reveals geographic clustering based on state,
roughly grouped by Census Bureau-designated regions, (E) Zooming in further on Massachusetts reveals clusters based on urban center (Boston, Worcester),
organizational sector (hospitals vs. university), and university systems and prestige (UMass system vs. Harvard, MIT).

corresponds to geography, but with some exceptions seemingly
stemming from cultural and religious similarity. For example,
Malaysia, with its official religion of Islam, is nearer to Mid-
dle Eastern countries in the embedding space than to many
geographically closer South Asian countries. We validate this
finding quantitatively with the cosine distance between nations
(the centroids of organization vectors belonging to a given
country). Malaysia is nearer to many Islamic countries such
as Iraq (d = 0.27), Pakistan (d = 0.32), and Saudi Arabia
(d = 0.41) than neighboring but Buddhist Thailand (d = 0.43)
and neighboring Singapore (d = 0.48).

Linguistic and historical ties also affect scientific migration.
We observe that Spanish-speaking Latin American nations are
positioned near Spain (Fig. 2C ), rather than Portuguese-speaking
Brazil (d = 0.35 vs. d = 0.54 for Mexico and d = 0.39
vs. d = 0.49 for Chile) reflecting linguistic and cultural ties.
Similarly, North African countries that were once under French
rule such as Morocco are closer to France (d = 0.32) than
to similarly geographically distant European countries such as
Spain (d = 0.39), Portugal (d = 0.52), and Italy (d = 0.52).
Comparable patterns exist even within a single country. For
example, organizations within Quebec in Canada are located
nearer France (d = 0.37) than the United States (d = 0.51).

Mirroring the global pattern, organizations in the United
States are largely arranged according to geography (Fig. 2D).
Re-projecting organizations located in Massachusetts (Fig. 2E)
reveals structure based on urban centers (Boston vs. Worcester),
organization type (e.g., hospitals vs. universities), and university
systems (University of Massachusetts system vs. Harvard and
MIT). For example, even though UMass Boston is located
in Boston, it clusters with other universities in the UMass
System (d = 0.29) rather than the other typically more highly
ranked and research-focused organizations in Boston (d = 0.39),
implying a relative lack of migration between the two systems.

Similar structures can be observed in other states such as among
New York’s CUNY and SUNY systems (SI Appendix, Fig. S18),
Pennsylvania’s state system (SI Appendix, Fig. S19), Texas’s
Agricultural and Mechanical universities (SI Appendix, Fig. S20),
and between the University of California and State University of
California systems (SI Appendix, Fig. S21).

Just as the embedding space makes it possible to zoom in
on subsets of organizations, it is also possible to zoom out by
aggregating organizational vectors. In doing so, we can examine
the large-scale structure that governs scientific migration. We
define the representative vector of each country as the average of
their organizational vectors and, using their cosine similarities,
perform hierarchical clustering of nations that have at least 25
organizations represented in the embedding space (Fig. 3A). The
six identified clusters roughly correspond to countries in Asia
and North America (orange), Northern Europe (dark blue), the
British Commonwealth and Iran (purple), Central and Eastern
Europe (light blue), South America and Iberia (dark green), and
Western Europe and the Mediterranean (light green). The cluster
structure shows that not only geography but also linguistic and
cultural ties between countries are related to scientific migration.

We quantify the relative importance of geography (by region),
and language (by the most widely spoken language of each
country) using the element-centric clustering similarity (64), a
method that can compare hierarchical clustering and disjoint
clustering such as geography or language at the different levels of
hierarchy by explicitly adjusting a scaling parameter r, acting like
a zooming lens (Materials and Methods). If r is high, the similarity
is based on the lower levels of the dendrogram, whereas when r is
low, the similarity is based on higher levels. Fig. 3B demonstrates
that regional relationships play a major role at higher levels of
the clustering process (low r), and language (family) explains the
clustering more at the lower levels (high r). This suggests that the
embedding space captures the hierarchical structure of migration.
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A

B

South America
AsiaRegion Europe North America Africa Oceania

Fig. 3. Geography, then language, conditions interna-
tional migration. (A) Hierarchically clustered similarity
matrix of country vectors aggregated as the mean of
all organization vectors within countries with at least
25 organizations. Color of matrix cells corresponds to
the cosine similarity between country vectors. Color of
country names corresponds to their cluster. Color of
three cell columns separated from the matrix corre-
sponds to, from left to right, the region of the country,
the language family (65), and the dominant language.
(B) Element-centric cluster similarity (64) reveals the
factors dictating hierarchical clustering (Materials and
Methods). Region better explains the grouping of coun-
try vectors at higher levels of the clustering. Language
family, and then the most widely spoken language,
better explain the fine-grained grouping of countries.

Embeddings Capture Latent Prestige Hierarchy. The embed-
ding space can also encode more fine-grained relationships
between entities. For example, prestige hierarchies, in which
researchers tend to move to similar or less prestigious organiza-
tions (21, 22), are known to underpin the dynamics of scientific
migration. Could the embedding space, to which no explicit
prestige information is given, encode a prestige hierarchy? This
question is tested by exploiting the geometric properties of the
embedding space with SemAxis (44). Here, we use SemAxis to
operationalize the abstract notion of academic prestige, defining
an axis in the embedding space using known high- and low-
ranked universities as poles. We use the Times Ranking of
World Universities as an external proxy for prestige [we also
use research impact from the Leiden Ranking (66); see SI
Appendix], The high-rank pole is defined as the average vector
of the top five U.S. universities according to the rankings,
whereas the low-rank pole is defined using the five bottom-ranked
(geographically matched by the U.S. census region) universities.
We derive an embedding-based ranking for universities based on
the geometrical spectrum from the high-ranked to low-ranked
poles (Materials and Methods).

The embedding space encodes the prestige hierarchy of U.S.
universities that is coherent with real-world university rankings.
The embedding-based ranking is strongly correlated with the
Times ranking (Spearman’s � = 0.73, Fig. 4A). They are also
strongly correlated with the mean normalized citation score of
university’s research output outlined in the Leiden rankings (66)
(Spearman’s � = 0.77, SI Appendix, Fig. S23B). For reference,
the correlation between the Times and the Leiden rankings
is 0.87 (Spearman’s �, Fig. 4B). The correlation between the
embedding-based ranking and the Times ranking is robust
regardless of the number of organizations used to define the
axes (SI Appendix, Fig. S22), such that even using only the
single top-ranked and bottom-ranked universities produces a
ranking that is significantly correlated with the Times ranking
(Spearman’s � = 0.46, SI Appendix, Fig. S22). The correlation
is also comparable to more direct measures such as node strength
(sum of edge weights, Spearman’s � = 0.73) and eigenvector

centrality (Spearman’s � = 0.76, see SI Appendix) from the
migration network. The strongest outliers that were ranked
more highly in the Times ranking than in the embedding-
based ranking tend to be large state universities such as Arizona
State University and the University of Florida. The institution
higher in the embedding-based ranking tend to be relatively
small universities near major urban areas such as the University
of San Francisco and the University of Maryland Baltimore
County, possibly reflecting exchanges of scholars with nearby
highly ranked institutions at these locations. This analysis is not
limited to the United States. Among the ten countries with the
most universities represented in the Leiden rankings, all except
for China have a Spearman’s � ≥ 0.5 between their prestige
axis and the relative rankings of their universities (SI Appendix,
Table S6). In sum, our results suggest that the embedding space is
capable of capturing information about academic prestige, even
when the representation is learned using data without explicit
information on the direction of migration [as in other formal
models (21)], or prestige.

The axes can be visualized to examine the relative position of
organizations along the prestige axis, and along a geographic axis
between California and Massachusetts. Prestigious universities
such as Columbia, Stanford, MIT, Harvard, and Rockefeller are
positioned toward the top of the axis (Fig. 4C ). Universities at
the bottom of this axis tend to be regional universities with lower
national profiles (yet still ranked by Times Higher Education) and
with more emphasis on teaching, such as Barry University and
California State University at Long Beach. The Massachusetts–
California axis, roughly corresponding to East–West, further
demonstrates the ability of these embeddings to capture latent
geography. Distance along this axis strongly correlates with the
longitudes of U.S. organizations (Spearman’s � = 0.63).

By projecting other types of organizations onto the prestige
axis, SemAxis offers a new way of representing a continuous
spectrum of organizational prestige for which rankings are often
low-resolution, incomplete, or entirely absent, such as for regional
and liberal arts universities (Fig. 4D), research institutes (Fig. 4E),
and government organizations (Fig. 4F ). Their estimated prestige
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A B

C D

E F Fig. 4. Embedding captures latent geography and
prestige hierarchy. (A) Comparison between the rank-
ing of organizations in the Times ranking and the
embedding ranking derived using SemAxis. Un-filled
points are those top and bottom five universities
used to span the axis. Even when considering only a
total of ten organization vectors, the estimate of the
Spearman’s rank correlation between the embedding
and Times ranking is � = 0.73 (n = 145, P < 0.0001),
which increases when more top-and-bottom ranked
universities are included (SI Appendix, Fig. S22). (B) The
Times ranking is correlated with Leiden Ranking of
U.S. universities with Spearman’s � = 0.87 and P <

0.001. (C–F ) Illustration of SemAxis projection along
two axes; the latent geographic axis, from California
to Massachusetts (left to right) and the prestige axis.
Shown for U.S. Universities (C), Regional and liberal arts
colleges (D), Research institutes (E), and Government
organizations (F ). Full organization names are listed in
SI Appendix, Table S1.

is speculative, though we find that it significantly correlates with
their citation impact (SI Appendix, Fig. S27). Correlation with
the geographic axis is strongest for universities (Spearman’s � =
0.64), followed by research institutes (Spearman’s � = 0.57)
regional and liberal arts colleges (Spearman’s � = 0.57), and
government organizations (Spearman’s � = 0.30); the relatively
low geographic correlation for government organizations may
stem from them having only one set of coordinates even if offices
are spread across the country.

SemAxis rankings can also be applied toward investigating
how prestige drives patterns of individuals’ migration (SI
Appendix, Fig. S28). In line with past findings, we observe that
transitions tend to occur between universities of similar or lower
prestige (21). Additionally, we observe two clusters of internal
migration at the top and bottom of the SemAxis hierarchy.

We also find that the size (L2 norm) of the organization
embedding vectors provides insights into the characteristics of
organizations (Fig. 5). Up to a point (around 1,000 researchers),
the size of U.S. organization’s vectors tends to increase propor-
tionally to the number of researchers (both mobile and non-
mobile) with published work; these organizations are primarily
teaching-focused institutions, agencies, and hospitals that either
are not ranked or have a low ranking. However, at around 1,000
researchers, the size of the vector decreases as the number of
researchers increases. These organizations are primarily research-
intensive and prestigious universities with higher rank, research
outputs, R&D funding, and doctoral students (SI Appendix,
Fig. S29). We report that this curve is almost universal across
many countries. For instance, China’s curve closely mirrors that
of the United States (Fig. 5B). Smaller but scientifically advanced
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Fig. 5. Size of organization embedding vectors captures prestige and size of organizations. (A) Size (L2 norm) of organization embedding vectors compared to
the number of researchers for U.S. universities. Color indicates the rank of the university from the Times ranking, with 1 being the highest-ranked university.
Uncolored points are universities not listed on the Times ranking. A concave shape emerges, wherein larger universities tend to be more distant from the origin
(large L2 norm); however, the more prestigious universities tend to have smaller L2 norms. (B) We find a similar concave-curve pattern across many countries
such as the United States, China, Australia, Brazil, and others (Inset, and SI Appendix, Fig. S30). Some countries exhibit variants of this pattern, such as Egypt,
which is missing the right side of the curve. The loess regression lines are shown for each selected country, and for the aggregate of remaining countries, with
ribbons mapping to the 99% CIs based on a normal distribution. Loess lines are also shown for organizations in Australia, Brazil, and Egypt (Inset).

countries such as Australia and other populous countries such as
Brazil also exhibit curves similar to the United States (Fig. 5
B, Inset). Other nations exhibit different curves which lack the
portions with decreasing norm, probably indicating the lack
of internationally prestigious institutions. Similar patterns can
be found across many of the 30 countries with the most total
researchers (SI Appendix, Fig. S30; see for more discussion).

A similar pattern has been observed in applications of neural
embedding to natural language, where it was proposed that a word
vector’s size represents its specificity, i.e., the word associated
with the vector frequently co-appears with particular context
words (67). If the word in question is universal, appearing
frequently in many different contexts, it would not have a large
norm due to a lack of strong association with a particular context.
Under this view, an organization with a small norm, such as
Harvard, appears in many contexts alongside many different
organizations in affiliation trajectories—it is well connected.
We conduct simple empirical and model-based investigations to
verify the underlying dynamics of this curve pattern. However, in
spite of theoretical support and an observed correlation between
the vector size and the expected connectedness of the organization
(R2 = 0.17), these experiments do not support “specificity” as the
sole mechanism of the observed concavity (SI Appendix). Another
possibility is that the concave curve is a result of distortion
caused by representing hierarchy in an Euclidean space (68), but
this is also not supported by simulations. Instead, our findings
emphasize that frequency and network connections constitute
pivotal factors driving this pattern (SI Appendix, Figs. S32 and
S33; see for more discussion). Further work is necessary to
determine the exact causes of this curve pattern in so many
countries, whether the same pattern can be found in other
domains of human migration, and if they suggest common
structures between both migration and language.

Conclusion
Neural embedding approaches offer a novel, data-driven solution
for efficiently learning an effective and robust representation of
locations based on trajectory data, encoding the complex and
multi-faceted nature of migration. We found that the unique
strength of word2vec stems from its equivalence to a gravity
model, making it a natural and theoretically grounded tool for
modeling migration. By virtue of this equivalence, word2vec
learns accurate representations of migration across disparate
domains as we demonstrated here. Focusing on the case of
scientific migration, we leverage the unique topological structure
of the embedding space to reveal how it encodes nuanced aspects
of migration, including global and regional geography, shared
languages, and prestige hierarchies.

In revealing the correspondence between neural embeddings
and the gravity model, the study of human migration can
move beyond geographic and network-based models of mi-
gration, and instead leverage the high-order structure directly
from individuals’ migration trajectories using these robust and
efficient methods. This correspondence supplies a much-needed
theoretical justification for the application of neural embedding
techniques toward migration data and contributes to a better
understanding of neural embedding techniques. Moreover, our
study offers a complementary approach to past applications of
neural networks toward migration and mobility data (49, 50).
Whereas most location-based embeddings highlight their pre-
dictive capability, we instead illustrate how an embedding
word2vec model creates accurate representations of migration
data, a “digital double” that bundles many complex features of
migration into a dense, continuous, and meaningful vector space
representation. Using this representation, functional distances
can be derived at multiple scales, but it can also be interrogated to
reveal fundamental insights about migration. In addition to being
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intuitive, accessible, and theoretically grounded, the word2vec
approach outlined here also has the advantage of learning complex
and implicit features of migration directly from raw trajectory
data, rather than exploiting a priori location features (51).

In conducting this analysis, we aim to offer a methodological
framework for using word2vec to study scientific migration, and
migration more broadly, such as animal migration, immigration
trends, transit-network mobility, discretized cell-phone location
data, and international trade. Once learned, functional distances
between locations, such as countries, cities, or organizations,
or the embedding model itself, can be published to facilitate
re-use, and support reproducibility and transparency in cases
when the underlying data are too sensitive to be made available.
Moreover, this approach can be used to learn a functional distance
even between entities for which no geographic analog exists,
such as between occupational categories based on individuals’
career trajectories. In addition to providing a functional distance
that supports modeling and predicting migration patterns, we
also demonstrate, through a variety of unique and power
techniques, how the semantic topology of the embedding space
can be leveraged to facilitate interpretation and application of
the complex features of migration. As we have shown, the
embedding space allows the visualization of the complex structure
of scientific migration at high resolution across multiple scales,
providing a large and detailed map of the landscape of global
scientific migration. Other operations such as comparing entities
or calculating aggregates, which could be complex and computa-
tionally expensive for other methods, are here reduced to simple
vector arithmetic. Embeddings also allow us to quantitatively
explore abstract relationships between locations, such as academic
prestige, and can potentially be generalized to other abstract
axes. Investigation of the structure of the embedding space,
such as the vector norm, reveals universal patterns based on the
organization’s size and their vector norm that should be explored
in future research.

This approach, and our study, also have several limitations.
First, the skip-gram word2vec model assumes that migrations
flows are symmetric, which is unlikely in real-world data.
Breaking this assumption, however, also breaks the clear and
simple mathematical equivalence between word2vec and the
gravity model of migration. Future studies may consider
directional embeddings to incorporate asymmetric nature of
migration and mobility, such as the radiation model (4). Second,
the neural embedding approach is most useful in cases of
migration between discrete units such as between countries, cities,
and businesses; this approach is less useful in the case of mobility
between locations represented using geographic coordinates,
such as that sourced from cell phone tracking. Third, neural
embeddings are an inherently stochastic procedure, and so results
may change across different iterations. However, in this study,
we observe all results to be robust to stochasticity, likely emerging
from the limited “vocabulary” of scientific mobility, airports, and
accommodations (several thousand) and the relatively massive
datasets used to learn representations (several million trajectories).
Applications of word2vec to problem domains where the ratio
of the vocabulary to data is smaller, however, should be imple-
mented with caution to ensure that findings are not the result
of random fluctuations. Fourth, the case of scientific migration
presents domain-specific limitations. Reliance on bibliometric
metadata means that we capture only long-term migration rather
than the array of more frequent short-term mobility such as con-
ference travel and temporary visits. The kinds of migration we do
capture—migration and co-affiliation—although conceptually

different, are treated identically by our model. Our data might
further suffer from bias based on publication rates: researchers at
prestigious organizations tend to have more publications, leading
to these organizations appearing more frequently in affiliation
trajectories. Fifth, for simplicity, we ignore the role of specialties.
In line with the concept of a “persona” (69), it may be possible
to create an interpretable embedding for each affiliation-subject
pair, to understand the benefits associated with institutions that
specialize in particular domains. Finally, our data are limited
to the period between 2008 and 2019, and so may not reflect
current patterns of migration that were shaped by the COVID-19
pandemic.

Migration and mobility are at the core of human nature
and history, driving societal phenomena as diverse as epi-
demics (55, 70) and innovation (12–16). However, the paradigm
of scientific migration may be changing. Traditional hubs of
migration have experienced many politically motivated policy
changes that affect scientific migration, such as travel restrictions
in the United States and the United Kingdom (71), whereas
other countries, such as China, have risen as major attractors of
international talent (72). Unprecedented health crises such as the
COVID-19 pandemic threaten to bring drastic global changes to
migration by tightening borders and halting travel. By revealing
the correspondence between neural embedding and the gravity
model and revealing their utility and efficacy, our study provides
a theoretical foundation and methodological framework for an
approach that uses neural embeddings to study migration.

Materials and Methods

Scientific Migration Data. We source co-affiliation trajectories of authors
from the Web of Science database hosted by the Center for Science and
Technology Studies at Leiden University. Trajectories are constructed from
author affiliations listed on the byline of publications for an author. Given
the limitations of author-name disambiguation, we limit our analyses to papers
published after 2008, when the Web of Science began providing full names and
institutional affiliations (73) that improved disambiguation (SI Appendix). This
yields 33,934,672 author–affiliation combinations representing 12,963,792
authors. Each author–affiliation combination is associated with the publication
year and an ID linking it to one of 8,661 disambiguated organizational affiliations
(see SI Appendix for more detail). Trajectories are represented as the list of author–
affiliation combinations, ordered by year of publication, and randomly ordered
for combinations within the same year. The most fine-grained geographic unit in
these data is the organization, such as a university, research institute, business,
or government agency.

Here, authors are classified as mobile when they have at least two distinct
organization IDs in their trajectory, meaning that they have published using
two or more distinct affiliations between 2008 and 2019. Under this definition,
mobile authors constitute 3,007,192 or 23.2% of all authors and 17,700,095
author–affiliation combinations. Mobile authors were associated with 2.5 distinct
organizational affiliations on average. Rates of migration differ across countries.
For example, France, Qatar, the USA, Iraq, and Luxembourg had the most
mobile authors (SI Appendix, Fig. S2C). However, due to their size, the
United States, accounted for nearly 40 % of all mobile authors worldwide
(SI Appendix, Fig. S2A), with 10 countries accounting for 80 % of all migration
(SI Appendix, Fig. S2B). The countries with the highest proportion of mobile
scientists are France, Qatar, the United States, and Iraq, whereas those with
the lowest are Jamaica, Serbia, Bosnia & Herzegovina, and North Macedonia
(SI Appendix, Fig. S2C). In most cases, countries with a high degree of inter-
organization migration also have a high degree of international migration,
indicating that a high proportion of their total migration is international (SI
Appendix, Fig. S2D). However, some countries such as France and the United
States seem to have more domestic migration than international migration.
While the number of publications has increased year-to-year, the migration and
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disciplinary makeup of the dataset have not notably changed across the period
of study (SI Appendix, Fig. S1).

U.S. Flight Itinerary Data. We source U.S. airport itinerary data from the
Origin and Destination Survey (DB1B), provided by the Bureau of Transportation
Statistics at the United States Department of Transportation. DB1B is a sample
of 10 percent of domestic airline tickets between 1993 and 2020, comprising
307,760,841 passenger itineraries between 828 U.S. airports. A trajectory is
constructed for each passenger flight itinerary, forming an ordered sequence
of unique identifiers of the origin and destination airports. Each itinerary is
associated with a trajectory of airports including the origin, destination, and
intermediary stops. We use population mi as the total number of unique
passengers who passed through each airport.

Korean Accommodation Reservation Data. We source Korean accommo-
dation reservation data from collaboration with Goodchoice Company Ltd. The
data contain customer-level reservation trajectories spanning the period of
August 2018 through July 2020 and comprising 1,038 unique accommodation
locations in Seoul, South Korea. A trajectory is constructed for each customer,
containing the ordered sequences of accommodations they reserved over
time. We use the total number of unique customers who booked with each
accommodation.

Embedding. We embed trajectories by treating them analogously to sentences
and locations analogously to words. For U.S. airport itinerary data, trajectories
are formed from the flight itineraries of individual passengers, in which
airports correspond to unique identifiers. In the case of Korean accommodation
reservations, trajectories comprise a sequence of accommodations reserved
over a customer’s history. For scientific migration, an “affiliation trajectory” is
constructed for each mobile author, which is built by concatenating together
their ordered list of unique organization identifiers, as demonstrated in Fig. 1
A, Top. In more complex cases, such as listing multiple affiliations on the
same paper or publishing with different affiliations on multiple publications
in the same year, the order is randomized within that year, as shown in
Fig. 1 A, Bottom.

These trajectories are used as input to the standard skip-gram negative
sampling word embedding, commonly known as word2vec (8). word2vec
constructs dense and continuous vector representations of words and phrases,
in which distance between words corresponds to a notion of semantic distance.
By embedding trajectories, we aim to learn a dense vector for every location,
for which the distance between vectors relates to the tendency for two locations
to occur in similar contexts. Suppose a trajectory, denoted by (a1, a2, . . . , aT ),
where at is the tth location in the trajectory. A location, at , is considered to have
context locations, at−w , . . . , at−1, at+1, . . . , at+w , that appear in the window
surrounding at up to a time lag of w, where w is the window size parameter
truncated at t − w ≥ 0 and t + w ≤ T . Then, the model learns probability
p(at+� |at), where−w ≤ � ≤ w and � 6= 0, by maximizing its log likelihood
given by

J =
1
T

T∑
t=1

∑
−w≤�≤w,� 6=0

log p(at+� |at), [17]

where,

p(j | i) =
exp(uj · vi)

Zi
, [18]

where v and u are the “in-vector” and “out-vector,” respectively, Zi =∑
j′∈A exp(uj′ · vi) is a normalization constant, and A is the set of all

locations. We follow the standard practice and only use the in-vector, v, which is
known to be superior to the out-vector in link prediction benchmarks (28–33, 36).

We used the word2vec implementation in the python package gensim.
The skip-gram negative sampling word2vec model has several tunable hyper-
parameters, including the embedding dimension d, the size of the context
window w, the minimum frequency threshold fmin, initial learning rate�, shape
of negative sampling distribution  , the number of the negative samples should
be drawn k, and the number of iterations. For main results regarding scientific
migration, we used d = 300 and w = 1, which were the parameters that

best explained the flux between locations, though results were robust across
different settings (SI Appendix, Fig. S7). Although the original word2vec paper
uses  = 0.75 (8), here we set  = 1.0, though results are only trivially
different at different values of  (SI Appendix, Fig. S8). We used k = 5, which
is suggested default of word2vec. We also use the same setting for U.S. airport
itinerary and Korean accommodation reservation data.

To mitigate the effect of less common locations, we set fmin = 50, limiting
to locations appearing at least 50 times across the training trajectories, resulting
in embeddings reflecting 744 unique airports for the U.S. airport itinerary data,
1,004 unique accommodations for Korean accommodation reservation data,
and 6,580 unique organizations for the scientific migration data. We set � to
its default value of 0.025 and iterate five times over all training trajectories. For
scientific migration, across each training iteration, the order of organizations
within a single year is randomized to remove unclear sequential order.

Distance. We calculate Tij as the total number of co-occurrences between two
locations i and j across the dataset. In scientific migration, Tij = 10 indicates that
the number of co-occurrences between organizations i and j between 2008 and
2019 is 10, as evidenced from their publications. Here, we treat Tij = Tji for the
sake of simplicity and, in the case of scientific migration, because directionality
cannot easily be derived from bibliometric records, or may not be particularly
informative (SI Appendix).

We calculate two main forms of distance between locations. The geographic
distance, gij, is the pairwise geographic distance between locations. Geographic
distance is calculated as the great circle distance, in kilometers, between pairs
of locations. In the case of U.S. flight itinerary and scientific migration, we
impute distance to 1 km when their distance is less than one kilometer. In the
case of Korean accommodation reservation data, because this data represents
trajectories of intra-city mobility that occurs at a much smaller scale international
migration, we impute distance to 0.01 km when their distance is less than
0.01 km. The embedding distance with the cosine distance, dij, is calculated as

dij = 1 −
vi·vj
‖vi‖‖vj‖

, where vi and vj are the embedding vectors for locations

i and j, respectively. Note that dij is not a formal metric because it does not
satisfy the triangle inequality. Nevertheless, cosine distance is often shown to be
useful in practice (6, 7, 74). We compare the performance of this cosine-based
embedding distance against those derived using inner product similarity and
Euclidean distance.

We compare the performance of the embedding distance to many baselines.
These include distances derived from simpler embedding approaches, such
as Singular Value Decomposition (SVD) and a Laplacian Eigenmap embedding
performed on the underlying location co-occurrence matrix. We also use network-
based distances, calculating vectors using a Personalized Page Rank approach
and measuring the distance between them using cosine distance and Jensen–
Shannon divergence (SI Appendix). Finally, we compare the embedding distance
against embeddings calculated through direct matrix factorization, following the
approach that word2vec implicitly approximates (43).

Gravity Law. We model co-occurrences Tij for locations i and j (referred to as
flux), using the gravity law of mobility (3). The gravity law of mobility, which
was inspired by Newton’s law of gravity, postulates that attraction between two
locations is a function of their population and the distance between them. This
formulation and variants have proven useful for modeling and predicting many
kinds of migration and mobility (52–55). In the gravity law of mobility, the
expected flux, T̂ij between two locations i and j is defined as,

T̂ij = Cmimjf(rij), [19]

where mi and mj are the population of locations, defined as the total number
of passengers who passed through each airport for U.S. airport itineraries, the
total number of customers who booked with each accommodation for Korean
accommodation reservations, and the yearly average count of unique authors,
both mobile and non-mobile, affiliated with each organization for scientific
migration. f(rij) is a decay function of distance rij between locations i and j.
Here, we used the most basic gravity model which assumes symmetry of the
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flow T̂ij = T̂ji and distance rij = rji, while there are four proposed variants (75).
There are two popular forms for the f(rij): One is a power law function in the
form f(rij) = r−�ij (� > 0), and the other is an exponential function in the

form f(rij) = e−�rij (� > 0) (76). The parameters for f(rij) and C are fit to
given data using a log-linear regression (4, 52–55).

We consider separate variants of f(rij) for the geographic distance, gij, and
the embedding distance, dij, and report the best-fit model of each distance.
For the geographic distance, we use the power-law function of the gravity law,
f(gij) = g−�ij (Eq. 20). For the embedding distance, we use the exponential

function, with f(dij) = e−�dij (Eq. 21).

ln
Tij

mimj
= ln C − � ln gij, [20]

ln
Tij

mimj
= ln C − �dij, [21]

where Tij is the actual flow from the data. The gravity law of mobility is sensitive
to Tij = 0, or zero movement between locations. In our dataset, non-zero
flows account for only 4.2% of all possible pairs of the 6,580 organizations for
scientific migration, 76.4% of all possible pairs of the 744 airports for U.S. airport
itinerary data, and 62.5% of all possible pairs of the 1,004 accommodations for
Korean accommodation reservation data. This value is comparable to other
common applications of the gravity law, such as phone calls, commuting, and
migration (4). We follow standard practice and exclude zero flows from our
analysis.

Element-Centric Clustering Similarity. Element-centric clustering similarity
(64) is a similarity measure that can produce disjoint, overlapping, and hier-
archically structured clusterings. Element-centric clustering similarity captures
cluster-induced relationships between elements through a cluster affiliation
graph where one vertex set is the original element V = {v1, ...vN} and the other
corresponds to the cluster C = {c1, ...cM} as a bipartite graph B(V ∪ C,R).
An undirected edge ai� ∈ R denotes element vi as a member of cluster c� .
For hierarchically structured clustering, each cluster c� is assigned a hierarchical
level l� ∈ [0, 1] by re-scaling the dendrogram according to the maximum path
length from its roots. The weight of the cluster affiliation edge is given by the
hierarchy weight function ai� = erl� with scaling parameter r which determines
the relative importance of membership at different levels of hierarchy. In this
context, smaller r gives more importance to clusters that are closer to the root,
prioritizing higher levels in the hierarchy. The lower levels are treated as a
refinement of the higher level. Conversely, larger r places greater emphasis on
the lower-level cluster structure, while viewing the higher levels of the hierarchy
as an aggregation of the lower-level structure. When r = 0, equal importance
is assumed for every cluster.

The cluster affiliation graph is projected onto a cluster-induced element graph
which is a weighted, directed graph summarizing the relationship induced by
common cluster memberships. In the cluster-induced element graph, each
edge between element vi and vj has weight wij =

∑


ai aj∑
� ai�

∑
m am

. Given

a cluster-induces element graph with weighted matrix W , the personalized
PageRank vector pi is used as membership-aware similarity between element i
and other elements in the graph. Then, the element-wise similarity of an element
vi in two clusters A and B is calculated with Si(A,B) = 1 − L1(pAi , pBj ),
and the final element-centric similarity of two clusteringA and B is found as
the average of the element-wise similarities, S(A,B) = 1

N
∑N

i=1 Si(A,B).

SemAxis. SemAxis and similar studies (30, 33, 44) demonstrated that “semantic
axes” can be found from an embedding space by defining the “poles” and that the
latent semantic relationship along the semantic axis can be extracted with simple
arithmetic. In the case of natural language, the poles of the axis could be “good”
and “bad,” “surprising” and “unsurprising,” or “masculine” and “feminine.” We
can use SemAxis to leverage the semantic properties of the embedding vectors
to operationalize abstract relationships between organizations.

Let S+ = {v+1 , v+2 · · · v
+
n } and S− = {v−1 , v−2 · · · v

−
n } be the set of

positive and negative pole organization vectors respectively. Then, the average
vectors of each set can be calculated as V+ = 1

n
∑n

i=1 v
+
i and V− =

1
n
∑n

i=1 v
−

i . From these average vectors of each set of poles, the semantic axis
is defined as Vaxis = V+

− V−. Then, a score of organization a is calculated
as the cosine similarity of the organization’s vector with the axis,

va · Vaxis
‖va‖‖Vaxis‖

, [22]

where a higher score for organization a indicates that a is more closely aligned
to V+ than V−.

We define two axes to capture geography and academic prestige, respectively.
The poles of the geographic axis are defined as the mean vector of all vectors
corresponding to organizations in California and then the mean of all vectors
of organizations in Massachusetts. For the prestige axis, we define a subset of
top-ranked universities according to either the Times World University Ranking
or based on the mean normalized research impact sourced from the Leiden
Ranking. The other end of the prestige axis is the geographically matched
(according to census region) set of universities ranked at the bottom of these
rankings. For example, if 20 top-ranked universities are selected and six of them
are in the Northeastern United States, then the bottom twenty will be chosen to
also include six from the Northeastern United States. From the prestige axis, we
derive a ranking of universities that we then compare to other formal university
rankings using Spearman rank correlation.

Data, Materials, and Software Availability. Anonymized data have been de-
posited in Figshare (https://doi.org/10.6084/m9.figshare.13072790.v1) (27).
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