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SUMMARY

Increasingly detailed data on the network topology of
neural circuits create a need for theoretical principles
that explain how these networks shape neural
communication. Here we use a model of cascade
spreading to reveal architectural features of human
brain networks that facilitate spreading. Using an
anatomical brain network derived from high-resolu-
tion diffusion spectrum imaging (DSI), we investigate
scenarioswhereperturbations initiatedat seednodes
result in global cascades that interact either coopera-
tively or competitively. We find that hub regions and a
backbone of pathways facilitate early spreading,
while the shortest path structure of the connectome
enables cooperative effects, accelerating the spread
of cascades. Finally, competingcascadesbecome in-
tegrated by converging on polysensory associative
areas. These findings show that the organizational
principles of brain networks shape global communi-
cation and facilitate integrative function.

INTRODUCTION

Spreading dynamics take place on virtually all real-world net-

works and systems, from infectious diseases on human contact

networks (Pastor-Satorras and Vespignani, 2001) to tweets,

memes, and behaviors on social networks (Granovetter, 1978;

Centola, 2010). A fundamental question in modern network sci-

ence is how such spreading dynamics are shaped by the

structure of the networks on which they occur (Watts, 2002).

Of particular interest is viral spreading, where digital content

such as images, videos, or links sweeps through a population

by being frequently shared between individuals, leading to wide-

spread adoption. The likelihood, size, and speed of such cas-

cades depend on their point of origin and on the global topology

of the network (Nematzadeh et al., 2014).

Recent advances in imaging and tracing of neuronal connec-

tions have resulted in the creation of comprehensive network
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maps (connectomes) of neural elements and their interconnec-

tions, both in animal models (Oh et al., 2014) and in the human

brain (Hagmann et al., 2008), revealing a hierarchical community

structure (Bassett et al., 2010) and a backbone of densely inter-

connected hubs (van den Heuvel et al., 2012). The topological

properties of the human connectome suggest that one of its

primary functions is to support efficient communication and inte-

gration of information (Bullmore and Sporns, 2012). As in socio-

technological systems, models of brain communication have

begun to create links between topology and function (Stam

et al., 2015; Mi�si�c et al., 2014b). So far, diffusion models have

proven useful for delineating functional modules (Betzel et al.,

2013; Delvenne et al., 2010) and predicting statistical depen-

dencies (functional connectivity) among remote neuronal time

courses (Goñi et al., 2014).

Here we show that spreading models reveal novel features of

brain structure and function. Using an anatomical brain network

derived from high-resolution diffusion spectrum imaging (DSI),

we investigate the anatomical design principles that shape and

constrain spreading on brain networks. We consider three sce-

narios: a single-seed scenario where a perturbation is initiated

at a single location, leading to a single cascade, as well as two

different two-seed scenarios, where perturbations are initiated

at two locations, leading to either cooperative or competitive

cascades. We compare our findings to patterns of functional

connectivity derived from fMRI, with a focus on resting state net-

works (RSNs)—the putative building blocks of higher cognitive

functions (Damoiseaux et al., 2006; Smith et al., 2009; Yeo

et al., 2011; Power et al., 2011; Fornito et al., 2012).

RESULTS

We simulated network spreading dynamics using a family of

linear threshold models (LTMs) that describe how local perturba-

tions trigger global cascades (Granovetter, 1978; O’Dea et al.,

2013). The models simulate how multiple exposures to some

perturbation from the neighborhood of a node cause the node it-

self to adopt an active state (Watts, 2002). The threshold param-

eter is the proportion of a node’s neighbors that must become

active before the node itself becomes active. At a threshold of

zero, cascades develop along shortest paths, while increasing
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the threshold allows cascades to deviate from shortest paths.

When the threshold is greater than the inverse of the highest de-

gree in the network, cascades are no longer guaranteed to

spread to the whole network. We set the threshold to the highest

value at which all perturbations cause a complete cascade,

allowing us to focus on adoption times for all possible combina-

tions of nodes. At this threshold, shortest paths only partially pre-

dict adoption time (R2 = 0.63) (Figure S2H), i.e., not all cascades

spread via topologically shortest paths, withmany of them taking

advantage of alternative paths as well.

This spreading model maps the initial trajectory of a cascade

and does not capture any sustained interaction among neural

elements. In other words, the model traces only the immediate

effect of one or more instantaneous, coincident perturbations,

but does not capture any subsequent feedback or reconfigura-

tion of functional interactions. Although this simple spreading

model is not biophysical, the spreading process itself may be

thought of in terms of synchronization (Fries et al., 2001; Zhou

et al., 2006; Womelsdorf et al., 2007). If many neighbors of a

node enter into a particular oscillatory regime, they act as an

external synchronizing force on that node. The resulting tran-

sient, coherent mode could act much like a balanced branching

process (Beggs and Plenz, 2003), thus leading to an oscillatory

cascade (Roberts et al., 2015).

Single Seed
We first consider the case where a perturbation is initiated at a

single seed node (Figure 1A). Across all possible starting points,

cascades spread faster to nodes that are within the same hemi-

sphere (4.97 versus 5.72, p < 0.001) and within the same

anatomically defined community as the seed node (3.86 versus

5.52, p < 0.001) (Figure 1B), with much of the variance in adop-

tion times accounted for by path length. The mean adoption

time for a source node (influence) and for a target node (recep-

tiveness) are positively correlated (r = 0.83, p < 0.001), as high-

degree nodes are both efficient at seeding cascades and among

the first to be reached by spreading cascades (see Figure S4 for

a complete set of correlations between all measures).

Given that much of the present spreading is dominated by

shortest paths, we investigated the degree to which the present

spreading model is related to network communicability, which

takes into account all possible routes between two nodes, with

longer routes weighted less (Estrada and Hatano, 2008).

Comparing communicability of all node pairs with the adoption

times between them, we find a negative relationship (r2 = �0.77;

Figure S2), reflecting the fact that node pairs that are more

communicable will also have shorter adoption times.

To investigate spreading within and between functional com-

munities (RSNs; Figure S1B), we derive the mean adoption times

for sources and targets placed in different RSNs and express

them as Z scores relative to a null distribution constructed by

randomly permuting RSN assignments within each hemisphere

(Figure 1C). Most of the entries in this adoption time matrix are

significantly different from chance (p < 0.05, Bonferroni cor-

rected), suggesting that the organization and functional relation-

ships among the RSNs reflect a specific, highly organized set of

spreading patterns. We find that cascades spread significantly

slower between sensory RSNs (somato-motor, visual, and
ventral attention networks) and faster between multimodal

RSNs (fronto-parietal, default mode networks).

To investigate the role of individual edges (representing white-

matter pathways), we define transit times as the ratio of edge

length to edge density, such that short, strong edges have rela-

tively shorter transit times, and long, thin edges have relatively

longer transit times. We then use asynchronous updating to

resolve the time at which connections are used to spread the

cascade (see Experimental Procedures). Early spreading, on

average, is driven by a compact backbone of pathways that

interconnect a set of medial cortical regions (e.g., medial orbito-

frontal and posterior cingulate cortex), as well as the bilateral in-

sulae, while later spreading is completed along more lateral

pathways (Figure 1D). It is noteworthy that these regions strongly

overlap with the putative rich club of hubs, a central component

of the connectome that is hypothesized to support functional

integration (van den Heuvel et al., 2012). The edge-betweenness

is a good, but imperfect, predictor of the overall use of that edge

(Figure 1E). This is consistent with the notion that shortest paths

account for the trajectory of many cascades, but that spreading

may occasionally proceed via longer paths as well.

Given that connectome density may vary depending on the

resolution of the parcellation, the diffusion protocol, and the trac-

tography algorithm, we sought to verify that relative spreading

metrics are robust to differences in network density. Following

the method described in Experimental Procedures, we gener-

ated two additional networks, with densities equal to 1 SD below

the population mean (k = 21,980 edges, 2.20% density), and

1 SD above (k = 26,616 edges, 2.66% density), in addition to

the original structural network, the density of whichwasmatched

to the population mean (k = 24,302 edges, 2.43% density).

Adoption times were highly correlated for the three matrices

(r = 0.96, 0.93, and 0.96), suggesting that relative differences in

spreading dynamics are not sensitive to changes in density.

Cooperative Interactions
We next consider the scenario where two perturbations initiated

at different seed nodes interact cooperatively (Figure 2A). In prin-

ciple, triggering a cascade from two nodes simultaneously may

lead to accelerated spreading and a speed-up of adoption times

across the network. Focusing on these synergistic effects of

simultaneous perturbations, we calculate the percent speed-

up in adoption time in the two-seed case relative to the faster

of the two individual single-seed cases.

Figure 2B shows the mean speed-up across the whole

network for all possible seed combinations. The results demon-

strate that the greatest global speed-ups are typically observed

when the seeds belong to different hemispheres (7.3% versus

9.8%, p < 0.001) and communities (5.1% versus 9.0%,

p < 0.001), while initiating perturbations within the same hemi-

sphere or anatomical community yield little or no speed-up. Fig-

ure 2C reveals that themagnitude of a speed-up achieved by any

given pair of seeds can be predicted by their topological relation-

ship. First, speed-ups are significantly greater for pairs of nodes

that are not linked by an anatomical connection compared to

those that are (p < 0.001). Second, speed-ups vary in proportion

to the path length between seeds, such that the greatest coop-

erative effects can be achieved if the cascades are initiated far
Neuron 86, 1518–1529, June 17, 2015 ª2015 Elsevier Inc. 1519



Figure 1. Single-Seed Spreading

(A) Schematic showing how a single perturbation (indicated by the arrow) develops into a global cascade.

(B) Adoption time matrices, showing the time it takes for a perturbation initiated at a particular seed node (rows) to reach another node in the network (columns).

Matrices are arranged by hemisphere (left), anatomical communities (middle), and resting state networks (right: ventral attention, VA; fronto-parietal, FPN;

salience, SAL; default mode, DMN; dorsal attention, DA; somato-motor, SM; visual, VIS; temporal, TEM).

(C) Mean adoption times between resting state networks, expressed as Z scores relative to a null distribution in which the assignment of nodes is permuted

(within-hemisphere). Blue circles indicate that the adoption times are slower than the null distribution, while red circles indicate the adoption times are faster.

(D) Connections that are used across all possible seeds and the average times at which they are used.Warmer colors indicate earlier contributions to the cascade.

(E) Relationship between edge-betweenness and the number of times an edge is used.
from one another. Third, for seeds that share a connection, the

greatest speed-ups are achieved if both seeds are high-degree

members of the putative rich club of hubs (van den Heuvel

et al., 2012). These cooperative effects engender several syner-

gistic relationships among the RSNs, most notably between the
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somato-motor and ventral attention networks, the somato-

motor and visual networks, and the visual and fronto-parietal

networks (Figure 2D).

The cooperative scenario also allows us to ask which parts of

the brain benefit from the greatest local speed-ups. Averaging



Figure 2. Cooperative Spreading

(A) Schematic showing how two simultaneous perturbations (indicated by arrows) combine into a global cascade.

(B) Speed-up matrices, showing howmuch faster the two-seed scenario is compared to the faster of the comparable one-seed scenarios. Matrices are arranged

by hemisphere (left), anatomical communities (middle), and resting state networks (right).

(C) Relationship between two seeds (structural connectivity, geodesic distance) predicts the magnitude of the speed-up. Error bars represent SE.

(D) Mean speed-ups between resting state networks, expressed as Z scores relative to a null distribution in which the assignment of nodes is permuted (within-

hemisphere). Blue circles indicate that the speed-ups are smaller than expected by chance, while red circles indicate the speed-ups are faster.

(E) The mean speed-up experienced by individual brain regions, averaged across all seed combinations.

(F) A specific test case, where all possible combinations of primary visual (pericalcarine) and primary auditory (transverse temporal) nodes are seeded. The

resulting speed-ups are observed primarily in the salience network. The bar graph indicates the speed-ups for all RSNs (statistically significant speed-ups, as

determined by permutation tests, are indicated by an asterisk).
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across all possible seed combinations, we find that polysensory

associative areas exhibit the greatest synergistic effects (Fig-

ure 2E), including the posterior portion of the temporoparietal

junction and the intraparietal sulcus, which suggests that the

well-known integrative and coordinative functions of these areas

may arise from their network embedding, which promotes coop-

erative spreading dynamics. Figure 2F shows a set of specific

test cases, where we seed perturbations in primary visual (peri-

calcarine) and primary auditory (transverse temporal) cortices.

The resulting speed-ups are distributed across the brain, with

peak effects including the insulae and anterior cingulate. Across

RSNs, we find that the salience network experiences a statisti-

cally significant speed-up (p < 0.01, Bonferroni corrected),

consistent with its role as an attentional subsystem that re-

sponds to behaviorally salient events (Seeley et al., 2007; Menon

and Uddin, 2010).

Competitive Interactions
Finally, we consider the scenario in which two perturbations

result in two cascades, representing competing or complemen-

tary neural signals (Figure 3A). These dynamics are described as

‘‘competitive’’ because the two cascades effectively compete

for influence over the nodes of the network: a node may adopt

one of two states, but not both. Thus, competitive dynamics pre-

sented here should not be confused with neuronal inhibition

or lateral inhibition. Although the competitive mechanism

described in the present study bears some similarity to the

notion of biased competition in selective attention (Koch and Ull-

man, 1987; Desimone and Duncan, 1995), it is considerably

more general, in the sense that cascades may originate from

any type of local perturbation (not just those related to sensory

transduction), and it does not include any overt, top-down inhib-

itory mechanism.

We first characterize the competition between cascades by

introducing two metrics: diversity and competitiveness. As

competing cascades envelop the brain, they eventually meet

and form one or more fronts. To delineate these fronts and deter-

mine where competing cascades tend to interface with each

other, we estimate the diversity of a node as the entropy of its

neighborhood (see Experimental Procedures). Nodes whose

neighbors have all adopted the same state and are part of the

same cascade will have low diversity, while nodes whose neigh-

bors are equally distributed among the two cascades will have

high diversity. We find that nodes comprisingmultimodal associ-

ation RSNs—particularly the default mode, dorsal attention, and

fronto-parietal networks—tend to have the most diverse neigh-

borhoods (Figures 3B and 3C). These diverse neighborhoods

define the fronts where competing cascades converge,

providing opportunities for their effective integration.

We define the competitiveness of a node as the average

cascade size for perturbations initiated at that node, averaged

across all other competing nodes. Thus, highly competitive

nodes are those that initiate the largest cascades regardless of

where the other perturbation is seeded. The model predicts

that the diverse multimodal RSNs will be the most competitive,

suggesting that association networks tend to dominate

spreading dynamics (Figures 3D and 3E). At the level of individual

nodes, we find several consistent ‘‘hot spots,’’ including the su-
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perior frontal gyrus, insula, superior temporal gyrus, and poste-

rior parietal cortex, that tend to be both competitive and diverse,

consistent with empirical findings indicating that these higher-

order brain areas are topologically central and receive polysen-

sory input from multiple sources (Hagmann et al., 2008; Menon

and Uddin, 2010). Diversity and competitiveness are positively

correlated (r = 0.65, p < 0.01), as high-degree hubs have both

diverse neighborhoods and out-compete nodes with lower de-

grees (see Figure S4 for a complete set of correlations between

all measures).

To estimate the degree to which a node conforms to its neigh-

borhood, we calculate the probability of the node’s allegiance

(i.e., its final state) given the final allegiance of its neighbors.

Node conformity was uniformly greater than 0.5, suggesting

that nodes tend to adopt the same state as their neighbors.

Importantly, node conformity was anticorrelated with degree

(r2 = 0.43, p < 0.001; Figures 3F and 3G), indicating that while

poorly connected nodes are more likely to adopt the same state

as their neighbors, high-degree hubs often differ from their

neighbors. This propensity for dissent is due to the fact that

hubs tend to be early adopters (Figure S2A); thus, their allegiance

tends to be more independent of their neighbors compared to

low-degree nodes. By comparison, low-degree nodes tend to

adopt late in the cascade and are more likely to be influenced

by their neighborhood.

Finally, the competitive scenario allows us to determine

whether spreading dynamics are capable of predicting func-

tional connectivity. Specifically, we can operationalize functional

connectivity between two nodes in terms of how often, on

average, they participate in the same cascade. If two nodes

participate in the same cascade across many different seeding

scenarios, this suggests an overlap in their functional profile

and should be predictive of their functional connectivity. We

therefore extended the competitive spreading model beyond

the two-seed scenario, to consider multiple seeds that compete

with each other. In the two-seed case it is possible to exhaus-

tively test every single combination, but the number of possible

combinations increases exponentially with the number of seeds,

making it intractable to exhaustively sample all combinations.

Thus, for each n-seed scenario we ran 10,000 seed combina-

tions, which we randomly sampled, without replacement, from

the larger space of all possible combinations. For each such

n-seed scenario, we calculated an ‘‘association weight’’ for

each pair of nodes: the number of times (out of 10,000) that

the node pair participates in the same cascade. This association

weight is effectively a proxy for functional connectivity, as it rep-

resents the overlap in functional profiles for a pair of nodes.

Finally, for each n-seed scenario we calculated the correlation

between the association weight and the observed functional

connectivity matrices.

We performed this procedure for a range of scenarios, from

n = 2 to n = 80 seeds. As the number of seeds increases, so

does the correlation between association weight and functional

connectivity (Figure 4A). Importantly, there is a clear peak in

the correlation when the number of seeds equals 25 (r = 0.41).

Figure 4B shows a visual comparison between the empirical

functional connectivity matrix and the association weight

matrix, while Figure 4C shows the edge-wise relationship



Figure 3. Competitive Spreading

(A) Schematic showing how two simultaneous perturbations (indicated by arrows) develop into competing cascades.

(B, D, and F) The competitiveness, diversity, and conformity of individual nodes.

(C and E) Themean competitiveness and diversity of resting state networks, expressed as a Z score relative to a null distribution in which the assignment of nodes

is permuted. Positive Z scores indicate greater competitiveness and diversity than expected by chance.

(G) Relationship between node degree and conformity.
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Figure 4. Predicting Functional Connectivity

For the n -seed competitive scenario, functional connectivity is operationalized as the proportion of times two nodes participate in the same cascade

(‘‘association weight’’).

(A) Relationship between the number of seeds and the correlation between empirical and predicted functional connectivity.

(B) Empirical and predicted functional connectivity matrices.

(C) Edge-wise relationship between empirical and predicted functional connectivity, for the whole brain, as well as for individual hemispheres (rh, right hemi-

sphere; lh, left hemisphere).
between association weight and empirical functional connectiv-

ity (r = 0.41). Overall, these correlations between predicted and

empirical functional connectivity compare favorably to many

other computational ‘‘forward’’ models, including neural mass

models (Honey et al., 2009), random walk/diffusion models (Bet-

zel et al., 2013; Abdelnour et al., 2014), and routing models (Goñi

et al., 2014). Similar to those models, the present spreading

model is even better at predicting functional connectivity for sin-

gle hemispheres (r = 0.47 for left, r = 0.49 for right), most likely

due to the inherent limitations of computational tractography

for inferring inter-hemispheric anatomical projections (see Meth-

odological Considerations for more discussion).

DISCUSSION

In summary, these findings offer a dynamic view of spreading

processes on the human connectome. The connectivity of the

brain shapes and constrains spreading patterns, revealing a

set of anatomical design principles underlying the emergence

of global dynamics. In particular, the present report demon-

strates that (i) rapid spreading is mainly facilitated by a compact

core of high-degree hubs and central paths, (ii) cooperative

relationships among RSNs are enabled by the shortest path
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structure of the network, and (iii) the associative properties of

polysensory areas and subnetworks arise from their ability to

integrate multiple cascades. These architectural features give

rise to highly organized spreading patterns, including function-

ally relevant interplay between RSNs. The three scenarios

presented here—single seed, cooperative, and competitive

spreading—open new perspectives on the coexistence of func-

tional segregation and integration in brain networks.

Network Structure Shapes Spreading
Our results reveal that hubs and a backbone of pathways domi-

nate early spreading, serving to outline the configuration of the

resulting cascade. These data contribute to growing literature

on the importance of hub nodes, which are disproportionately

important inmultiple cognitive domains (Cole et al., 2013; Fornito

et al., 2012; Crossley et al., 2013), while disruption of hub con-

nectivity is increasingly recognized as a hallmark of neurological

and psychiatric disorders (Rubinov and Bullmore, 2013; Stam,

2014). Likewise, the pathways that support early spreading are

reminiscent of a high-capacity backbone of pathways reported

in previous studies (van den Heuvel et al., 2012). These findings

offer a possible explanation for why hubs and central pathways

are so important: across all possible starting points, cascades



spread along a specific set of trajectories that revolve around

hub nodes, which effectively set the pace for spreading and

establish the initial outline of the cascade. This propensity for

spreading via central hubs and pathways further predicts that

anatomical hubs should be functional hubs as well, consistent

with previous reports on structure-function relationships in the

brain (Honey et al., 2009; Shen et al., 2015).

In addition, the shortest path structure of the network is shown

to be a key architectural feature that shapes spreading patterns

and determines the relationships between components of the

network. In particular, the shortest path structure of the network

helps to accelerate the spread of cascades, enabling coopera-

tive effects. The shortest path structure has always been

problematic for theoretical models of brain function because

communication along shortest paths entails the biologically

implausible assumption that neural elements or signals possess

complete knowledge of the global topology. In the present

model, cascades naturally spread along shortest paths without

any such knowledge, providing a biologically plausible mecha-

nism for how neural communication may take advantage of the

shortest paths in the network.

The effect of network structure is particularly salient in the

cooperative and competitive relationships between RSNs. Func-

tional interactions between RSNs are an active topic of research

(Zalesky et al., 2014), with many cognitive functions supported

by dynamic coordination between functional modules, including

attention (Hellyer et al., 2014) and memory (Fornito et al., 2012;

Kragel and Polyn, 2015). Our results demonstrate that a simple

spreading process that takes place on an anatomically realistic

network predicts the existence of such relationships between

RSNs. For instance, themodel predicts a synergistic relationship

between the visual and somato-motor networks, consistent with

the notion that these two networks must coordinate to effect

multisensory perception and motor control. In addition, we find

that polysensory associative areas (precuneus, posterior cingu-

late, insula) and networks (default mode, frontoparietal, salience)

tend to have diverse neighborhoods, which is consistent with

their putative role in functional integration.

The Role of Simple Models
Our approach highlights the promise and potential utility of

communication and spreading models for illuminating principles

of brain structure and function. By deliberately abstracting

away microscopic details such as neuronal signaling, simple

models emphasize the emergence of global patterns from the

interactions among individual neural elements and allow us to

articulate and quantify the behavior of the system as a whole

(Raj et al., 2012; Stam et al., 2015; O’Dea et al., 2013; Mi�si�c

et al., 2014a, 2014b; Messé et al., 2015). This approach is

complementary to traditional modeling paradigms in computa-

tional neuroscience, which aim to reduce large populations of

spiking neurons to a distribution of states across time (Deco

et al., 2008; Ritter et al., 2013). By modeling the interactions be-

tween neuronal populations, these traditional paradigms reveal

the emergence and perpetual reconfiguration of coherent func-

tional networks (Deco et al., 2011). In comparison, the present

‘‘single shot’’ spreading model maps the initial trajectory of a

focal perturbation and provides complementary information
about the role of network connectivity in shaping functional

integration.

The simple spreading model described in the present report

can be readily extended to address specific experimental

questions and to generate testable predictions. We envision

the model as a ‘‘workbench’’ for investigating specific types

and combinations of perturbations and addressing questions

regarding sensation, perception, motor control, and higher

cognitive function. For instance, in the present report we demon-

strated one such test case, where two perturbations were initi-

ated in primary auditory and primary visual cortex, representing

multisensory stimulation. Our model predicted that this auditory-

visual stimulation primarily benefits the salience network: an

attentional subsystem for orienting attention to external events.

Similarly, our model predicted that the majority of cascades

propagate via hub nodes and a compact core of medial projec-

tions. This result suggests that structural hubs also tend to be

functional hubs because they mediate the spread of cascades

and could be experimentally verified by comparison with stimu-

lation studies.

More generally, simple spreading models can be used to

simulate any perturbation of interest. For example, researchers

interested in visual control of movement and sensory-motor inte-

gration could simultaneously initiate perturbations in primary

visual cortex and primary motor cortex (Wolpert and Ghahra-

mani, 2000). The predictions of the model, such as which areas

benefit most from cooperative spreading, could then be tested

against recordings of local neural activity, such as electrocorti-

cography or intracranial electroencephalography, or source-

localized magnetoencephalography. Likewise, researchers can

use the model to investigate how RSNs interact to implement

tasks and behavior (Fornito et al., 2012). A number of recent

studies have posited that flexible switching based on external

task demand is mediated by parts of the frontoparietal control

network (Cole et al., 2013). Investigators interested in the role

of this control network could systematically test howquickly cas-

cades spread with and without the presence of the frontoparietal

network. The predictions from these simulations, such as adop-

tion times, could be linked to human behavior by correlating

adoption times with individual differences in task-switching

performance.

Methodological Considerations
Following in the footsteps of minimal models of other complex

systems, such as group dynamics, flocking and swarming (Vic-

sek et al., 1995; Couzin et al., 2005), traffic patterns and crowd

panic (Helbing et al., 2000), epidemics (Pastor-Satorras and Ves-

pignani, 2001), and social collective behavior (Schelling, 1971;

Henry et al., 2011), the present model trades off biological detail

for the ability to capture the emergence of global patterns.

Despite several parallels with mesoscopic neural dynamics,

this general spreading model does not explicitly embody any

details about neural physiology. Rather, we have used the

spreading model as a tool to explore the complex architecture

of the human connectome and to generate relativemetrics about

its ability to support communication.

Another potential limitation of the present study is the use of

diffusion imaging and computational tractography for inferring
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anatomical connectivity. At present, the combination of DSI and

tractography is the leading approach for non-invasive in vivo

reconstruction of human anatomical connectivity. However,

this approach has several known limitations, including the

inability to perfectly resolve crossing fibers and a susceptibility

to both false positives and false negatives, resulting in dimin-

ished anatomical accuracy (Jones et al., 2013; Thomas et al.,

2014), which may be reflected in our results. Although our use

of a group-composite matrix may attenuate single-subject-level

inaccuracies, this does not address any potential systematic

biases in the reconstruction procedure. These shortcomings of

diffusion imaging and tractography highlight the need for new

non-invasive technologies for mapping anatomical brain net-

works in humans.

Conclusion
As the field of connectomics advances toward a more complete

structural description of the human brain (Insel et al., 2013; Van

Essen et al., 2013), these models may contribute to a much-

needed theoretical framework for studying how communication

processes unfold within the global topology. Akin to their role in

other areas of contemporary science, such as group dynamics

(Vicsek et al., 1995; Couzin et al., 2005), sociology (Helbing

et al., 2000; Schelling, 1971; Henry et al., 2011), and epidemi-

ology (Pastor-Satorras and Vespignani, 2001), spreadingmodels

of brain function may allow us to capture the organizational prin-

ciples of the connectome by bringing into focus the emergent

global behavior of the system.

EXPERIMENTAL PROCEDURES

Data Acquisition

Informed written consent in accordance with institutional guidelines (protocol

approved by the Ethics Committee of Clinical Research of the Faculty of

Biology and Medicine, University of Lausanne, Switzerland) was obtained for

all subjects. A total of 40 healthy participants (16 females, 25.3 ± 4.9 years

old) were scanned in a 3-Tesla MRI scanner (Trio, Siemens Medical, Germany)

using a 32-channel head-coil. The session protocol was comprised of (1) a

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence

sensitive to white/gray matter contrast (1-mm in-plane resolution, 1.2-mm

slice thickness), (2) a DSI sequence (128 diffusion-weighted volumes and a

single b0 volume, maximum b-value 8,000 s/mm2, 2.2 3 2.2 3 3.0 mm voxel

size), and (3) a gradient echo EPI sequence sensitive to BOLD contrast

(3.3-mm in-plane resolution and slice thickness with a 0.3-mm gap, TR

1,920 ms, resulting in 280 images per participant). During the fMRI scan, par-

ticipants were not engaged in any overt task, and the scan was treated as

eyes-open resting-state fMRI (rs-fMRI).

Data Pre-processing

Initial signal processing of all MPRAGE, DSI, and rs-fMRI data was performed

using the Connectome Mapper pipeline (Daducci et al., 2012). Gray and white

matter were segmented from the MPRAGE volume. The resulting gray matter

volume was divided into 1,015 approximately equally sized regions of interest

(Cammoun et al., 2012). The focus of the present study was on cortical struc-

tures only, so all subcortical regions were discarded from further analysis,

including bilateral amygdala, hippocampus, thalamus, caudate, putamen, nu-

cleus accumbens, pallidum, and the brain stem, resulting in 1,000 regions of

interest. Each region of interest could be mapped to 1 of 68 cortical areas

(34 in each hemisphere).

DSI data were reconstructed following the protocol described by Wedeen

et al. (2005), allowing us to estimate multiple diffusion directions per voxel.

The diffusion probability density function was reconstructed as the discrete
1526 Neuron 86, 1518–1529, June 17, 2015 ª2015 Elsevier Inc.
3D Fourier transform of the signal modulus. The orientation distribution func-

tion (ODF), f, was calculated as the radial summation of the normalized 3D

probability distribution function pðxÞ

fðuÞ=
Z

pðruÞp2dr; (Equation 1)

where r is the radius and u a unit vector. Thus, the ODF is defined on a discrete

sphere and captures the diffusion intensity in every direction. The integral was

evaluated for a set of vectors ui representing the vertices of a tessellated

sphere, resulting in a diffusion map composed of ODFs at every location in

the brain. These functions represent deformed spheres with radius propor-

tional to fðuÞ.
Structural Connectivity

Structural connectivity matrices were estimated for individual participants

using deterministic streamline tractography on reconstructed DSI data, initi-

ating 32 streamline propagations per diffusion direction, per whitematter voxel

(Wedeen et al., 2008). Within each voxel, the starting points were spatially

random. For each starting point, a fiber streamline was grown in two opposite

directions with a fixed step of 1 mm. Once the fiber entered a new voxel, the

fiber growth continued along the ODF maximum direction that produces the

least curvature for the fiber (i.e., was most similar to the trajectory of the fiber

to that point). Fibers were stopped if the change in direction was greater than

60 degrees/mm. The process was complete when both ends of the fiber left

the white matter mask.

Structural connectivity between pairs of regions was measured in terms of

fiber density, defined as the number of streamlines between the two regions,

normalized by the average length of the streamlines and average surface

area of the two regions (Hagmann et al., 2008). The goal of this normalization

was to compensate for the bias toward longer fibers inherent in the tractogra-

phy procedure, as well as differences in region size.

A group structural connectivity matrix was constructed from the individual

participants’ matrices using a consensus approach. To preserve the edge

length distribution in the individual participants’ matrices, we first collated all

extant edges in the individual matrices and binned them according to length.

The number of bins was determined heuristically, as the square root of the

mean binary density across participants. The consensus edges were then

selected separately for each bin. For instance, if the mean number of edges

(across participants) in a particular bin i is equal to ki, we selected the ki
most commonly occurring edges in that bin. To ensure that inter-hemispheric

edges are not systematically under-represented, this procedure was carried

out separately for inter- and intra-hemispheric edges. The binary density of

the final group matrix was 2.43%.

Functional Connectivity

Functional data were pre-processed using routines designed to facilitate

subsequent network exploration (Murphy et al., 2009; Power et al., 2012).

fMRI volumes were corrected for physiological variables, including regression

of white matter, cerebrospinal fluid, as well as motion (three translations and

three rotations, estimated by rigid body co-registration). BOLD time series

were then subjected to a lowpass filter (temporal Gaussian filter with full width

half maximum equal to 1.92 s). The first four time points were excluded from

subsequent analysis to allow the time series to stabilize. Motion ‘‘scrubbing’’

was performed as described by Power et al. (2012).

A group-average functional connectivity matrix was constructed from the

fMRI BOLD time series by concatenating the regional time series from all par-

ticipants and estimating a single correlation matrix. To threshold this matrix,

we sampled at random 276 points from the concatenated times series and

calculated a full correlationmatrix from these points. We repeated this analysis

1,000 times. From these bootstrapped samples, we estimated confidence in-

tervals for the correlation magnitude between every pair of brain regions. Pairs

whose correlation was consistently positive or negative across the 1,000 sam-

ples were retained (along with the sign and weight of the correlation) as puta-

tive functional connections.

Graph Theoretic Measures

All graph theoretic metrics and analyses were performed using the Brain

Connectivity Toolbox (http://sites.google.com/site/bctnet/), including degree,

closeness, path length, and edge-betweenness (Rubinov and Sporns, 2010).

http://sites.google.com/site/bctnet/


Community Detection

Functional network communities (RSNs) were identified using a variant of the

modularity maximization approach (Newman and Girvan, 2004; Rubinov and

Sporns, 2011). This approach aims to uncover the community assignments

of each node that maximize the quality function

QðgÞ= 1

m+

X
ij

h
w+

ij � g,p+
ij

i
dðsi ; sjÞ � 1

m+ +m�
X
ij

h
w+

ij � g,p�
ij

i
dðsi ; sjÞ

(Equation 2)

Here,w+
ij is the connectivity matrix containing only the positive correlations.

Similarly, w�
ij contains only correlation values less than zero. The term

p±
ij = ðs±

i s±
j Þ=ð2m± Þ represents the expected density of connections between

nodes i and j given some null model (in this case, the configuration model),

where s±
i =

P
jw

±
ij andm± =

P
i;j>iw

±
ij . The variable si is the community assign-

ment of node i, and dðsi ; sjÞ is the Kronecker function and is equal to 1 when

si =sj and is 0 otherwise. Finally, the parameter g is the structural resolution

parameter, and scales the relative importance of the null model, which allows

us to uncover larger ðg<1Þ or smaller ðg>1Þ communities.

We scanned resolution parameters g= 0:5 to g= 10 in increments of 0:1 and,

at each scale, ran the Louvain algorithm 250 times (Blondel et al., 2008) to iden-

tify partitions that produced large Q values. We focused on the communities

generated at g= 1:5. This scale was selected because the similarity (measured

as the Z score of the rand index) averaged over all pairs of partitions generated

at that scale exceeded that of all the other scales (Traud et al., 2011). Rather

than treat any of the 250 partitions as representative, we chose to study the

consensus partition, which we arrived at following the method presented in

Bassett et al. (2013).

The resulting consensus partition, which is used in the main text, had a

modularity score QðgÞ= 0:61 and contained Nc = 8 communities which we

visually compared and matched to the topographical profiles of known

RSNs, including the ventral attention (VA), fronto-parietal (FPN), salience

(SAL), default mode (DMN), dorsal attention (DA), somato-motor (SM), visual

(VIS), and temporal (TEM) networks (Figure S1B).

Structural network communities were identified in an analogous manner,

such that the communities generated at resolution g= 1 had amodularity score

QðgÞ= 0:64 and contained Nc = 12 communities (Figure S1A).

Rich Club Detection

A rich club is a subgraph of high-degree nodes that are densely interconnected

among each other above and beyond what would be expected on the basis of

their degrees (Colizza et al., 2006). Rich club detection is performed across a

range of degrees. For degree k, all nodes with degree %k are removed from

the network. The rich club coefficient fðkÞ is the ratio of remaining connections

to all possible connections (i.e., the density of the remaining subgraph). This

ratio is simultaneously computed for a null distribution of 1,000 randomized

networks with preserved degree sequences. The resulting null distribution of

rich club coefficients is used to normalize the empirical rich club coefficient

fnormðkÞ=fðkÞ=frandomðkÞ. This procedure is repeated for a range of k. A

fnormðkÞ that is consistently greater than 1 over a range of k suggests the ex-

istence of rich club organization. In the present study we observed consistent,

statistically significant fnormðkÞ>1 for kR57, resulting in a rich club with 15

nodes.

Having classified nodes as belonging to the rich club or not, we can classify

edges in a similar way. Edges that connect non-rich club nodes to non-rich

club nodes are classified as ‘‘local,’’ edges connecting non-rich club nodes

to rich club nodes are classified as ‘‘feeder,’’ and edges connecting rich

club nodes to other rich club nodes are classified as ‘‘rich club.’’

Rewired Structural Networks

As an alternative null model to the label-permuting procedure reported in the

Results section, we also created a population of randomized null networks,

with preserved degree and strength sequences. The networks were first ran-

domized by swapping pairs of edges, thus preserving binary degree (Maslov

and Sneppen, 2002). In order to approximate the strength sequence of the

observed structural connectivity matrix, we used a simulated annealing proce-

dure in which we minimized a cost function defined as E =
P

i

��si � s0i
��, where si

and s0i are the strength of node i in the observed and randomized networks,

respectively. To minimize this energy, we randomly permuted weight assign-
ments across edges and probabilistically accepted the permutations that

reduced the energy while simultaneously reducing the temperature. The an-

nealing schedule consisted of 107 iterations and a starting temperature of

t0 = 100, which was scaled by 0.125 after each iteration. The result of this pro-

cedure was an average final energy of E = 3:27±0:53, which indicates that the

average strength discrepancy per node was slightly greater than 0.003.

We created Z scores for adoption times, cooperative speed-ups, competi-

tiveness, and diversity based on this rewiring null model, and correlated them

with Z scores derived from the permutation-based null model, as reported in

the Results section. We find a good overall correspondence between the

two sets of Z scores (r = 0.74, 0.68, 0.46, and 0.64; p < 0.01 for all measures).
LTM

The LTM refers to a family of models that describe how a particular node in a

network adopts a certain state if some proportion of its neighbors have also

adopted that state (Granovetter, 1978). The state of a node i at time t is

described by the variable siðtÞ= f0; 1g, such that the node has either adopted

the active state (1) or not (0). Once a node adopts the active state, it remains

active forever.

At time t = 0 the entire network is in an inactive state, save for a subset of no-

des (‘‘seeds’’) that are activated, initializing a perturbation. In the synchronous

update model, the state of every node i depends on its neighborhood Ni and is

updated at every time step according to the following rule,

siðt + 1Þ=
(
1 ifqki<

X
j˛Ni

sjðtÞ
0 otherwise:

(Equation 3)

where q denotes the threshold and ki the degree of node i. As explained in the

Results section, in the present study we set q= 0:008.

For binary networks, the threshold simply refers to the proportion of a node’s

neighbors that must adopt the active state before the node adopts. For

weighted networks, the threshold refers to the proportion of a node’s total

weighted inputs that connect to nodes with active states before the node

adopts the active state as well. In the present study, all but one of the results

were generated using the synchronous update model on a weighted anatom-

ical brain network, where theweights represent the fiber densities derived from

computational tractography.

To infer the order in which individual edges are used during a cascade (Fig-

ures 1D and 1E), we used asynchronous updating. Here, the threshold rule op-

erates on a weighted network as described above, but the influence of one

neighbor on another is subject to a finite ‘‘transit time,’’ which we define as

the ratio of fiber length to fiber density. This reflects the intuition that perturba-

tions should spread faster along short, thick fiber tracts than on long, thin fiber

tracts. The transit time makes it possible to unambiguously infer which partic-

ular connections contribute to change in state for any given node.

In the case of cooperative and competitive spreading we also make use of

synchronous updating, using fiber densities to weigh the contribution of neigh-

bors. In the competitive case, we simply extend the model to include two

possible active states or ‘‘colors.’’ Once a node adopts a particular color, it re-

mains in that specific active state forever. For a node to adopt a particular co-

lor, its weighted neighborhood must exceed the proportional threshold for that

specific color; in other words, the colors cannot be combined to exceed a

threshold. The weights provided by fiber densities help to break ties. Thus,

in cases where both competing signals exceed threshold for a particular

node, the node will adopt the signal that accounts for the greater total weight

of its connections.

From these scenarios we define several performance metrics that charac-

terize the spread of cascades. In the cooperative case, we define the

speed-up (S) in adoption time in the two-seed case ðAi;jÞ relative to the faster

of the individual single-seed cases ðAi ;AjÞ

S=
minðAi ;AjÞ � Ai;j

minðAi ;AjÞ : (Equation 4)

For global speed-ups, A represents the mean adoption time for the whole

network, while for local speed-ups,A represents the adoption time for a partic-

ular target node.
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In the competitive case, we define the competitiveness of a node i as fol-

lows. If two competing cascades are initiated at nodes i and j, we define the

competitiveness of node i as the size of the cascade initiated at node i, aver-

aged over all nodes j. We define the diversity of a node in terms of the informa-

tion entropy of its neighborhood. For a node i and a set of c possible node

colors, we calculate the probability that the neighbors of i will adopt each state

xc and define the entropy hi as

hi = �
X
c

PðxcÞlogPðxcÞ: (Equation 5)

In the present case, where we consider only two possible active states

(e.g., ‘‘red’’ and ‘‘blue’’), the entropy of a node’s neighborhood would be calcu-

lated as

hi = � ðPðredÞlogPðredÞ+PðblueÞlogPðblueÞÞ (Equation 6)

Finally, we define the conformity of a particular node as the probability of that

node adopting a particular state given the final states of its neighbors. Thus, if a

particular node has 5 neighbors, with 2/5 neighbors ‘‘red’’ and 3/5 neighbors

‘‘blue,’’ and the node itself is ‘‘red,’’ the conformity of that node is said to

be 2/5.
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