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RESEARCH ARTICLE

Improving land use inference by factorizing mobile phone call
activity matrix
Huina Maoa, Yong-Yeol Ahnb, Budhendra Bhaduria and Gautam Thakura

aUrban Dynamics Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA; bSchool of Informatics and
Computing, Indiana University, Bloomington, IN, USA

ABSTRACT
Land use is shaped by human activities. Traditional methods of measuring
land uses (e.g. surveys and remote sensing techniques) often have difficul-
ties in capturing human activities. The near-ubiquitous coverage of mobile
phones opens up a new way to investigate land use through human
activities. We propose to analyze land use by characterizing human activity
patterns based on the aggregated call volume, and apply non-negative
matrix factorization to identify fundamental behavioral classes. Using
tower-based call data from Dakar, Senegal, we discover two fundamental
land use patterns: commercial/business/industrial (C/B/I) and residential.
Then, the land use of the reception area of each cell tower can be inferred
based on the weights obtained for each basis vector. To evaluate the
proposed approach, the results are compared with two points-of-interest
(POI) data sets obtained from OpenStreetMap and Facebook’s Graph API.
We have found that a majority of POIs like embassies, offices, and hotels are
located in the predicted C/B/I areas; specifically, there is a strong positive
correlation between estimated land use weights and the number of related
POIs. Furthermore, we have shown analyzing 24-h call pattern matrix can
track daily land use changes.
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1. Introduction

Land use is ‘the human employment of the land’ (Meyer & BL Turner, 1994) and characterized by
‘the arrangements, activities, and inputs people undertake’ (Di Gregorio, 2005). Depending on the
socioeconomic functions, land uses can be categorized into classes, such as industrial, commercial,
residential, administrative, and agricultural. Understanding land use is crucial for practitioners and
researchers to perform urban analysis and planning, such as population estimation, infrastructure
planning, neighborhood zoning, as well as hazard and pollution analysis (Donnay & Unwin, 2001).
Traditionally, land use is identified through surveys, which usually tend to be expensive and
difficult to obtain frequently. Therefore, computational methods have been proposed to detect
land use automatically. For instance, remote sensing techniques have been widely used for land
cover and land use classification (Gong & Howarth, 1990; Lu & Weng, 2006; Tatem, Nayar, & Hay,
2006; Yin et al., 2011; Yuan, Sawaya, Loeffelholz, & Bauer, 2005, 2014). Both spectral and texture
features of satellite images can be combined to identify objects, such as roads, parking lots,
buildings, and grass, from satellite imagery (Yuan et al., 2014). Reflective spectral bands of satellite
imagery are used to identify land cover types including urban land, agriculture, forest, grass, water,
and wetland (Yuan et al., 2005). However, spectral and texture features are highly varying within
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the same land use class, so it is difficult to differentiate land use types based on these features
alone (Wu, Qiu, Usery, & Wang, 2009). In order to address the limitation, some ancillary information,
such as geographic information systems data (Yin et al., 2011), surface temperature (Lu & Weng,
2006), contextual properties (Wu et al., 2009), census data (Mesev, 1998), and expert knowledge
(Platt & Rapoza, 2008), has been added to improve land use classification. However, most of the
ancillary information still focuses on the physical properties of the land rather than human
activities. Even though human activities can be partially captured by demographic and socio-
economic surveys such as census, the temporal and spatial resolutions are usually not high enough
to capture dynamic changes of land use.

The universal adoption of mobile phones provides us with a high-resolution proxy for human
activities. Several studies investigated the potential of mobile phone data for spatiotemporal popula-
tion distribution modeling, and applied clustering, classification, and eigendecomposition methods
to identify call patterns for land use detection (Pei et al., 2014; Reades, Calabrese, & Ratti, 2009; Soto &
Frías-Martínez, 2011; Toole, Ulm, González, & Bauer, 2012). Results have shown a moderate detection
rate (below 60%) in Pei et al. (2014) and Toole et al. (2012). In addition to mobile phone data, social
media data has been used for land use analysis. The hourly geotagged tweet volume is used to
detect traditional (e.g. business, residential, industrial) and new types of land use, such as nightlife
places (Frias-Martinez & Frias-Martinez, 2014). GPS-enabled taxi trajectory data is used to classify
multiple urban land use types (Liu, Wang, Xiao, & Gao, 2012). Network activity data is also used to
study human activities and their relation to physical environment. For instance, a significant correla-
tion between MIT’s Wi-Fi network activity data and campus building uses (e.g. residential buildings,
research labs, auditorium) is found in Calabrese, Reades, and Ratti (2010).

Yet, most existing studies focus on developed countries, probably due to the extensively deployed
sensors and rich ground-truth data available. In resource-constrained countries, there is far less
geotagged human activity data, and detailed land use data is also scarce, if not missing. Moreover,
different types of land uses are usually mixed and co-located in low-income countries, unlike land use
zoning in developed countries. So, due to the limited data sources and mixed land use, it is unclear
whether similar findings can be generalized to low-income countries. In our paper, we study the land
use detection in Senegal (a low-income country in Sub-Saharan Africa) based on the Call Details
Record (CDR) data, provided for the Orange Data for Development Challenge in 2014.

Existing work (Pei et al., 2014; Toole et al., 2012) evaluates their land use prediction results by
comparing with zoning data, which, however, reflects the planned use of the land by the govern-
ment and may not reflect the actual land use. In our paper, we use the crowdsourced points-of-
interest (POI) labeling data from OpenStreetMap (OSM) and Facebook as the ground truth to
evaluate our results. Moreover, different from existing work that applies clustering and classifica-
tion algorithms to categorize land uses into separated classes (e.g. commercial, residential, indus-
trial), we propose to use non-negative matrix factorization (NMF) to decompose the call pattern
matrix and generate a weighted land use map that shows a mixture of commercial and residential
land uses. This method is well suited for the nature of mixed land use. At the end, our results show
that it is possible to track land use changes by monitoring the daily weight changes.

2. Data

2.1. CDR data

This data set contains the number and duration of calls between each pair of antennae (1,666
antennae in total) at every hour from 1 January 2013 to 31 December 2013. Since our study is
based on an aggregated spatial analysis, users’ anonymity is maintained. According to
Telecommunication/ICT Development Report (2015), the mobile cellular subscriptions per 100
people in Senegal reached 99 in 2014. Given the high penetration rate, we consider mobile
phone usage data as a good proxy for human activities.
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We study the land use in the capital region, Dakar, instead of the whole country. Dakar is
the most populous and affluent region in Senegal (with 20% of the nation’s population); and
OSM and Facebook are more extensively used in Dakar than in other regions of the country.
The higher usage of OSM and Facebook produces more human-labeled land use data, which is
used to evaluate our results. Also, there is a denser placement of antennae in Dakar: 488 cell
phone towers (about 29% of all) are located there. This generates high spatial resolution data
for our study.

It is well known that human dynamics are very different between work (e.g. commercial,
business, industrial) and residential areas, with the former has dense activities during days
and weekdays, while the latter shows the opposite – more activities during nights and
weekends. This observation constitutes the basis of our analysis. Similar to (Toole et al.,
2012), we process the CDR data in three steps in order to capture the spatiotemporal patterns
of human activities.

First, for each antenna, we aggregate its total call volume (including the number of incoming
and outgoing calls) on an hourly basis and normalize the original hourly call volume time series
into z-score over the study period from 1 January 2013 to 31 December 2013. We denote the
normalization as ziðtÞ ¼ viðtÞ�μi

σi
, where viðtÞ represents the absolute call volume of antenna i at hour

t, μi is the mean call volume of antenna i across the whole study period. This normalization scales
the signal so that we can compare call patterns of different cell phone towers.

Second, in order to capture the relative activity of a certain area at a given hour, we subtract the
average activity (or ‘baseline’ activity) of all areas during the hour from its normalized call volume.
Hence, we obtain the z-score spatial residual of an antenna, i, which is represented by

zεi ðtÞ ¼ ziðtÞ � zðtÞ, where zðtÞ represents the average normalized call volume of all antennae in
Dakar at time t.

Third, we calculate zεi ðtÞ of an antenna over the time by hour of day (i.e. 0 AM to 11 PM) and day

of week (i.e. Monday to Sunday), and obtain the average value, zεi ðtÞ. By doing this, we obtain a

168-dimension (i.e. 7 days × 24 h) vector for each antenna, ½zεi ð1Þ; zεi ð2Þ; :::; zεi ð168Þ�. We remove 11
antennae that have less than 168 features, which leads to 477 antennae in our analysis.

In Figure 1, we show the spatiotemporal differences of mobile phone communication
activities by plotting the aggregated call flows during the day (from 8 AM to 5 PM), night
(from 6 PM to 11 PM), weekdays (Monday to Friday), and weekends (Saturday and Sunday). The
edge weight between each pair of antennae reflects the relative intensity of call volume to the
average in the entire region at the same time. This graph demonstrates different call activity
patterns across the day and night as well as across weekdays and weekends. It is reasonable to
assume that areas with more activities during the day/weekdays are likely to be commercial/
business/industrial, while areas with more activities during the night/weekends are residential.
For example, Dakar Plateau, the hub point of call flow during the day and weekdays (i.e. the
bottom corner on the left in Figures. 1(a) and 1(c)) is the central district of the city, having most
public administrations, major banks, business centers located there. By contrast, Guediawaye,
within the hub region of call flow during the night and weekends (see Figures. 1(b) and 1(d)), is
found to be a small town in Dakar, having no large business places but mainly serving for
residential uses.

We then compare the call patterns of Dakar Plateau and Guediawaye by showing their
normalized call time series (ziðtÞ) and spatial residuals (zεi ðtÞ) in Figure 2. The activity peaks of
Guediawaye in the evenings lag a few hours to the peaks of Dakar Plateau in the days, and the
level of aggregated activities of Guediawaye is higher than that of Dakar Plateau on Saturday
and Sunday. After subtracting the average activity of the entire Dakar, the spatial residuals of
two normalized time series demonstrate an even stronger difference (see Figure 2(b)): both
signals show an inverse relationship with Dakar Plateau having much higher activities than the
average during the day and weekdays and Guediawaye having much higher activities than the
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average during the night and weekends. We use the spatial residuals instead of the original
normalized ones from now on.

We underline the value of information from call patterns by comparing with satellite images of
two regions. As discussed before, since commercial and residential areas can share similar physical
characteristics, using spectral and texture features alone is usually not enough to differentiate land
uses. Figure 3 shows satellite images from service areas of two antennae (IDs: 179 and 155), which
exhibit similar image features. However, their call patterns as shown in Figure 3(c) contrast each
other: antenna 179 reveals strong ‘commercial’ characteristics, while antenna 155 demonstrates
strong ‘residential’ characteristics. So, call activity provides uniquely relevant information about
land use, especially when their physical features are not disparate.

2.2. Open-sourced POI data

2.2.1. OSM data
The POI data in OSM is voluntarily added by users to tag the use of a place represented by a point
or polygon on the map. Since the official land use data is missing in Dakar, we adopt POI data as
the ground truth to evaluate our land use inference results.

Figure 1. Call flow visualization during the day, night, weekdays, and weekends. (a) Day, (b) night, (c) weekday, and (d) weekend.
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The OSM POI data sets are obtained from Trimble Data Marketplace (http://data.trimble.com/
market). Among various POI features, we select seven features that are most relevant to land
uses. These features include land use, office, amenity, historic, tourism, shop, and leisure. Land use
feature includes commercial, residential, industrial, cemetery, garages, military, recreation
ground, retail, etc. Office refers to a business place for conducting administrative or professional
work. Shop includes convenience, clothes, book, jewelry, bakery stores, as well as kiosk (i.e.
small shops), etc. Amenity includes facilities such as bar, restaurant, college, school, bank, and
pharmacy. The POI data is available in three geometry formats: polygons, points, and lines.
Figure 4 shows the obtained POI features in the region of Dakar. Some individual POI features
are listed: 1,316 amenity, 65 office, 664 shop, and 69 tourism labeled points, as well as 423
tagged land use polygons. The Dakar region is consisted of four departments – Dakar,
Gudiawaye, Pikine, and Rufisque. The former two departments are the main urban lands,
while the latter two are the suburbs. As we can see from Figure 4, there is much less POI
data in the suburbs than in the urban land.

2.2.2. Facebook POI data
The second POI data set used for our evaluation is obtained via Facebook’s Graph API. The
data is collected through PlanetSense (Thakur et al., 2015), a geospatial data platform devel-
oped by the Oak Ridge National Laboratory for real-time data streaming and analytics. There

Figure 2. Data transformation of call patterns of two arrordosiments (a subdivision in a department): Dakar Plateau and
Guediawaye. (a) z-score normalization and (b) z-score spatial residuals.
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are 3,797 POI points in the Dakar region (see Figure 5), covering 82 types of POIs. The most
frequently tagged POI types are local business (1,152), shopping/retail (423), and restaurant/
cafe (171).

Figure 3. Satellite imagery snapshots and call patterns of antennae 179 and 155. (a) Service area of antenna 179, (b) service
area of antenna 155, and (c) call pattern comparison between these two antennae.

Figure 4. Points-of-interest features obtained from OpenStreetMap for Dakar, Senegal.
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3. Methodology and results

3.1. Inferring land use from mobile phone call activities

We assume that each cell tower’s service area (approximated by the Voronoi polygon) is a mixture
of commercial and residential land uses, and each land use corresponds to a representative call
pattern. To disentangle the call pattern of each service area, we propose the following problem
formulation. A is an m × n mobile phone call activity matrix, where m is the number of cell towers
and n is the length of a call pattern vector of each cell phone tower. Here, m ¼ 477 and n ¼ 168.
Each row vector of A is a n-dimensional call pattern vector, which are the spatial residuals of

normalized call time series obtained in Section 2.1, Ai: ¼ ½zεi ð1Þ; zεi ð2Þ; :::; zεi ð168Þ�. Each row is
normalized to 0 to 1. A can be approximated as a product of two matrices W and H:

A ’ WH: (1)

Here, H contains two rows, which represent fundamental land use patterns: commercial/business/
industrial (C/B/I) and residential. Each row of x W contains combination weights. Both H and W are
non-negative.

This is a typical non-NMF problem, which aims to approximate high-dimensional data repre-
sentation by a lower-dimensional representation with non-negativity constraints (Berry, Browne,
Langville, Pauca, & Plemmons, 2007; Lee & Seung, 1999). To obtain W and H, we use the Gradient
Descent algorithm (Lin, 2007), which minimizes the following objective function:

fðW;HÞ ¼ 1
2
k A�WH k2F ; (2)

where F stands for the Frobenius norm. The implementation is based on the scikit-learn Python
library.

Figure 6 shows two resulting basis vectors, denoted by Component 1 and Component 2. It can
be seen that these two components show opposite patterns: peaks of Component 1 are in the day

Figure 5. Points-of-interest features obtained via Facebook Graph API for Dakar, Senegal.
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time (at 12 PM) and weekdays, while peaks of Component 2 are in the night (at 9 PM) and
weekends, capturing C/B/I and residential characteristics, respectively.

Then, the original call pattern time series of each cell tower can be approximated by a linear
combination of these two basis vectors based on weights contained in each row of W. Voronoi
polygons are used to approximate the reception area of cell towers (Gonzalez, Hidalgo, & Barabasi,
2008). Based on the estimated call patterns for each tower, we infer the land use map at the level
of Voronoi polygon, which is shown in Figure 7(a). The color value in the map is determined by the
weights for two basis vectors, that is, w1

w1þw2
. Blue hue represents C/B/I, while red hue indicates

‘residential’ (or out-of-work) land use.
Voronoi polygons are not actual neighborhood boundaries. In order to obtain a land use map in

a physically meaningful context, we convert the land use map at the level of Voronoi polygon (see
Figure 7(a)) to the one with actual neighborhood boundaries. Dakar consists of 45 communes or
neighborhoods.1 Figure 7(b) shows the area intersections between Dakar neighborhood polygons
and Voronoi polygons of cell phone towers. Let Ni be a neighborhood polygon, ANi the area of the
neighborhood polygon, Vj a Voronoi polygon of cell phone tower j, AVj the area of this Voronoi
polygon, and CVj the color value of Vj. We compute the color value of the neighborhood polygon,
CNi , based on the proportion of the area of intersections with other Voronoi polygons, see Eq. (3):

CNi ¼
X

Vj

CVj
ANi \ Vj

ANi

(3)

Then, we can obtain a land use map for the neighborhoods in Dakar, which is shown in Figure 7(c).
Furthermore, we also apply NMF to analyze more nuanced classes of activities. Figure 8

shows the three- and four-basis vectors. It can be seen that these two new components capture
different land use characteristics: the third component represents heavy uses at early evenings
(i.e. 6 PM) during weekdays and through the day time on Saturday, but shows very low uses on
Sunday. We hypothesize that this land may be mainly for leisure activities, such as shopping or
retail. Here, we consider this land use type as leisure. To test this hypothesis, we compare our
predicted land use results with the distribution of shopping POIs. For each cell tower, we
obtained four weights, ½w1;w2;w3;w4�, corresponding to the four components. If w3 is the
maximum value, we classify this cell tower polygon’s land use type as leisure. Here, we filter

Figure 6. Two basis vectors obtained from decomposing the 24-h/7-day call pattern matrix using non-negative matrix
factorization.
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out cell towers with a small w3 (i.e. w3<0:4), as they do not show a strong leisure-land
characteristics. Within these remaining 124 cell towers’ polygons, there are 113 Facebook
shopping/retail POIs: among which 86% (or 97/113) is found to be in the predicted leisure
land. The fact that most shops in Dakar are closed on Sunday may explain the lowest call
activities on Sunday from these areas. Different from the first three components, the fourth one
is characterized by two peaks on each day (9 AM and 9 PM). We find that 95% (or 87/92) of the
cell towers with a large weight in the fourth component (i.e. w4 � 0:4) are located in the

Figure 7. Estimated land use map based on call activities: (a) at the Voronoi polygon level, (b) intersection between Voronoi
polygon (grey dashed line) and neighborhood (red solid line) boundaries, and (c) at the neighborhood level.

Figure 8. Multiple basis vectors obtained from decomposing the 24-h/7-day call pattern matrix using non-negative matrix
factorization. (a) Three components and (b) four components.

146 H. MAO ET AL.



suburbs – Pikine (60%) and Rufisque (35%). This may suggest that the fourth component
represents a sub-urban or rural land use type.

Since detailed official land use data is missing and multiple types of POI data are limited,
especially in suburb areas, it is difficult to evaluate nuanced classifications of land use in Dakar. So,
we focus on the results obtained from two fundamental basis vectors (C/B/I and residential) for the
in-depth evaluation in the following section.

3.2. Evaluation based on the POI data from OSM

The original call activities are recorded at the location of cell towers, and Voronoi polygons are
used to approximate their service areas. The POI data sets of OSM are available at three geometry
formats: points, lines, and polygons. So, the spatial partitions of our mobile phone data and the POI
data are not congruent. To reconcile different data sets for the evaluation, we transform all the data
into the same uniform grid at a resolution of 100 m.

Two resulting basis vectors obtained from Section 3.1 capture C/B/I and residential character-
istics, respectively. The original call patterns of a given cell phone tower can be approximated by
the linear combination of two basis vectors weighted by w1 and w2. Here, we classify an area as C/
B/I if w1>w2, and residential, otherwise. To evaluate the result, we compare the prediction with
human-labeled POI data from OSM. Table 1 shows the comparison of two-class predictions with
POI features, commercial, office, industrial and residential. We find that a majority of commercial,
office, industrial areas are under the predicted C/B/I class, while over 60% of residential places are
within the predicted residential class. In addition, Figure 9 shows the distributions of more POI
features under these two classes. When w1>w2, dominating features include embassy, garage, hotel,
university, public building, restaurant, and military, whereas POIs, such as religious, cemetery, clinic,
kiosk, farmland, and greenfield, take the larger proportions when w1< ¼ w2. These findings are well
aligned with the actual land use characteristics: for instance, embassies, public buildings, and
offices are usually located in the commercial and business areas; religious places, clinics, and kiosks
(i.e. very small shops) are usually located at residential neighborhoods. Also, cemeteries, farmland,
and greenfield, which are often close to residential instead of work areas, are found to be more
present when w1< ¼ w2.

Overall, our results demonstrate the promise of our method for land use detection, especially,
there is a 90.4% detection rate for commercial area and 76.6% for office area, but the detection
rates for residential (60.7%) and industrial (63.6%) areas are relatively low. This is perhaps due to the
fact that residential and industrial areas often co-locate with other land use types in Dakar. Future
work needs finer-scaled human activity data and contextual information to improve mixed land use
inference further.

3.3. Evaluation based on the POI data from Facebook

The top three most frequently tagged POIs from Facebook include 1,152 local business, 423
shopping/retail, and 171 restaurant/cafe. Here, we assume that areas with a larger C/B/I weight
may contain more business/commercial related POIs. To test this assumption, we correlate land use
weights with the number of business, shopping, and restaurant POIs at the level of neighborhoods
in Dakar (see the 45 neighborhoods in Figure 7(c)). As the cell tower’ Voronoi polygon is small, the
POI data at the level of Voronoi polygon can be sparse. Therefore, we conduct the correlation

Table 1. Comparing land use estimation with POI (‘commercial/office/industrial/residential/’) from OSM.

POI Predict ‘Commercial’ ‘Office’ ‘Industrial’ ‘Residential’

C/B/I 90.4% 76.6% 63.6% 39.3%
Residential 9.6% 23.4% 36.4% 60.7%
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analysis at the level of neighborhood. The neighborhood land use weights (w1 and w2) can be
estimated based on the area intersection between cell tower’s Voronoi polygons and neighbor-
hood polygons (see the illustration in Figure 7.) The format of Facebook’s POIs includes only points,
so it is straightforward to check if the point is within a certain neighborhood polygon. For each of
the neighborhood in Dakar, we check how many POI points it contains. Figure 10 shows the scatter
plots between estimated land use weights and number of POIs. As it can be seen, there is a
significant positive correlation between C/B/I weights and number of local business points
(γ ¼ 0:59; p � 0:01), restaurant/cafe (γ ¼ 0:70; p ¼ 0:0002), and shopping/retail
(γ ¼ 0:49; p ¼ 0:003). This finding suggests our method is promising to predict the level of
mixed land use, for example, larger C/B/I weights indicates more work related or business use of
the land.

3.4. Tracking daily land use changes

Since humans use the land differently overtime, we aim to track the dynamic change of land
uses. Our mobile phone data is available on an hourly basis from 1 January 2013 to 31
December 2013. For each day, we construct a hourly call pattern matrix, A ¼ ½Aij�m�n, where
Aij is the spatial residual of normalized call volume of cell phone tower i at the hour j

Figure 9. Comparing land use estimation with multiple types of POI from OSM.
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(j 2 ½0; 23�), m is the number of cell phone towers times the number of days, and n is the
length of call pattern vector. Here the call pattern vector is derived for 24 h per day, so n ¼ 24.
Similar to Section 3.1, we aim to factorize the original call pattern matrix to identify basis
vectors and weight matrix, which are represented by two reduced-dimensional matrices: H and
W in Eq. (1). Figure 11 shows the patterns of two basis vectors extracted from the original call

Figure 10. Scatter plots of land use weights and number of POIs: (a) ‘Local business’, (b) ‘Restaurant/cafe’, and (c) ‘Shopping/retail’.

Figure 11. Two basis vectors obtained from decomposing the 24-h call pattern matrix using non-negative matrix factorization.

JOURNAL OF LAND USE SCIENCE 149



pattern matrix. As it can be seen, Component 1 demonstrates C/B/I characteristics with more
activities in the day but fewer in the night, while Component 2 shows the opposite pattern,
which captures residential characteristics.

We obtain a call pattern matrix for each day, and apply NMF to find basis vectors and
weights. Based on the daily weight changes, we can track land use differences over time.
Figure 12 shows an example of daily weight variations of a cell tower (ID: 191), which displays
a C/B/I land use type with its w1 being much larger than w2 during most of the time (see
Figure 12(a)). However, we observe significant changes on a few days (such as 1 January, 9
August, 16 October), marked by vertical lines in the graph. In Figure 12(b), we compare the
average call pattern of this cell tower through the whole period with call patterns on 1
January and 16 October, from which we find that the average call pattern shows a strong C/
B/I characteristic with peaks during the day and troughs during the night, while the call
patterns on 1 January and 16 October are significantly different from the average pattern.
This suggests the land is used differently on these abnormal days: The New Year Day is quite
obvious, and we find that 16 October was the country’s biggest festival (Tabaski or Eid al-
Adha), when people usually get up very early to prepare for the biggest Muslim celebration
of the year; interestingly, we observe call spikes in the early morning of the day, see
Figure 12(b).

Figure 12. An example of tracking daily land use changes for Antenna 191. (a) Weights of two basis vectors through the year
2013 and (b) hourly call pattern comparisons: average versus abnormal.
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The above example shows the possibility of tracking land use changes by monitoring daily call
weights. We acknowledge that the concept of daily land use change that we use here is equivalent
to the temporal place affordance change, not necessarily a fundamental land use change. But with a
longer period of human activity data being available, it will be possible for us to track land use
evolution and identify permanent land use changes.

4. Conclusion and discussion

In this paper we proposed to identity land use in Dakar, Senegal, by the use of mobile phone
communication data. A 24-h/7-day call pattern matrix is constructed to represent human
activity patterns during days and nights as well as weekdays and weekends. Non-NMF is
applied to decompose the call pattern matrix and extract two basis vectors, which show C/B/I
(or work pattern) and residential (or out-of-work pattern) characteristics, respectively. Then,
we estimated the mixed land use of the service area of a given cell tower based on the
weights (w1 and w2) assigned for each basis vector. Our prediction results are compared with
crowdsourced POI labeling on OSM and Facebook. It has shown that a larger proportion of
POI features like embassies, public buildings, offices, and hotels, appear in our estimated C/B/I
areas, while religious places, cemeteries, and small shops tend to be in the predicted
residential areas. Also, we have found that there is a significant positive correlation between
C/B/I weights and number of business, restaurant, and shopping POIs. Moreover, our method
demonstrates the promise of tracking daily land use changes based on the NMF analysis for
the 24-h call pattern matrix derived from each day. In addition to two basis vectors, our
method is able to identify additional patterns, which may represent land use types of
business/leisure and suburbs.

Unlike remote sensing techniques, our work focuses on human activity patterns instead of
biophysical characteristics for land use detection. Compared to existing work (Pei et al., 2014;
Reades et al., 2009; Soto & Frías-Martínez, 2011; Toole et al., 2012) that leverage novel data sources
(e.g. CDR and social media data) for land use analysis, our study is different: first, we extend the
study to a low-income country, where mixed land use is common and official land use data is rare
due to the expensive cost of collecting such data. With more and more human activity data being
generated, our method may provide a cost-effective option for land use measurement in resource-
constrained nations. Second, the NMF technique used in our paper that can separate mixtures of
call patterns is well suited for mixed land use inference. Plus, based on the weights generated for
basis vectors, we can track land use changes over time. Third, the crowdsourced POI data obtained
from OSM is used to evaluate our results, while official zoning data is usually adopted as the
ground truth (Pei et al., 2014; Toole et al., 2012). Since zoning data reveals planned land use, it may
not be necessarily the actual land use. Instead, crowdsourcing data like OSM’ and Facebook’s POI
may serve as a more realistic land use data source.

Last but not the least, several limitations in our study should be noted. First, the land use
inference is conducted at the level of Voronoi polygons associated with the cell towers. The region
of Voronoi polygons is influenced by the tower density, so some Voronoi tessellations are coarse.
This limitation is restricted by the CDR data used. High-resolution data, such as satellite imagery,
may be coupled with CDR data to improve land use inference on a finer scale. Second, due to the
data availability, our study only focuses on Dakar, Senegal. With more human activity data being
available, which include not only mobile phone data, but also geo-referenced social media data,
our method may be applied to study land uses across countries.

Overall, our results show the promise of using mobile phone data to infer land use and
detect land use changes. In future work, high-resolution satellite imagery data will be com-
bined with human activity data to improve multiple land use classification on a finer scale.
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1. https://en.wikipedia.org/wiki/Dakar_Region

Acknowledgments

The authors would like to acknowledge the financial support for this research from the US government for Oak
Ridge National Laboratory’s Laboratory Directed Research and Development (LDRD) project number 7677.
Yong-Yeol Ahn thanks the support from Microsoft Research. We especially thank Dr. Jiangye Yuan, Eric
Weber, and Dr. Vladimir A. Protopopescu from the Oak Ridge National Laboratory, and Dr. Xin Shuai from
the Research and Development at Thomson Reuters for their insightful comments on an earlier version of the
manuscript.

At least one or more of the authors of this manuscript are employees of UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy. Accordingly, the US government retains and the publisher, by
accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to
do so, for US government purposes.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors would like to acknowledge the financial support for this research from the US government for Oak Ridge
National Laboratory’s Laboratory Directed Research and Development (LDRD) project number 7677.

Notes on contributors

Dr. Huina Mao received the Ph.D. degree in Informatics from Indiana University in Bloomington in 2014. She is
currently a Liane Russell Fellows at the Oak Ridge National Laboratory in the US. Her research interest include big
data, natural language processing, machine learning, social science, and urban science.

Dr. Yong-Yeol Ahn is an Assistant Professor at Indiana University School of Informatics and Computing. He received
his Ph.D. degree in Statistical Physics from KAIST in 2008. He develops and leverages mathematical and computational
methods to study complex systems such as cells, the brain, society, and culture.

Dr. Budhendra Bhaduri is a Corporate Research Fellow and leads the Geographic Information Science and Technology
group at Oak Ridge National Laboratory. He is the founding director of the Urban Dynamics Institute at ORNL. His
research interests and experience include novel implementation of geospatial science and technology in sustainable
development research, including population dynamics, urbanization and watershed impacts, energy resource assess-
ment, and disaster management. He received his Ph.D. in Earth & Atmospheric Sciences from Purdue University.Dr.
Gautam Thakur is a research scientist at Oak Ridge National Laboratory. He received his Ph.D. degree in computer
information and science engineering from University of Florida in 2012. His research focuses on population dynamics,
urban morphology, network science, and transportation simulation and modeling.

Dr. Gautam Thakur is a research scientist at Oak Ridge National Laboratory. He received his Ph.D. degree in computer
information and science engineering from University of Florida in 2012. His research focuses on population dynamics,
urban morphology, network science, and transportation simulation and modeling.

References

Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., & Plemmons, R.J. (2007). Algorithms and applications for
approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 52(1), 155–173.
doi:10.1016/j.csda.2006.11.006

Calabrese, F., Reades, J., & Ratti, C. (2010). Eigenplaces: Segmenting space through digital signatures. IEEE Pervasive
Computing, 9(1), 78–84. doi:10.1109/MPRV.2009.62

152 H. MAO ET AL.

https://en.wikipedia.org/wiki/Dakar_Region
https://doi.org/10.1016/j.csda.2006.11.006
https://doi.org/10.1109/MPRV.2009.62


Di Gregorio, A. (2005). Land cover classification system: Classification concepts and user manual: LCCS, 8. Rome: Food &
Agriculture Org.

Donnay, J.P., & Unwin, D. (2001). Modelling geographical distributions in urban areas. Remote Sensing and Urban
Analysis, 205–224.

Frias-Martinez, V., & Frias-Martinez, E. (2014), “Crowdsourcing land use maps via Twitter,” Workshop on Data Science for
Social Good, 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

Gong, P., & Howarth, P. (1990). The use of structural information for improving land-cover classification accuracies at
the rural-urban fringe. Photogrammetric Engineering and Remote Sensing, 56(1), 67–73.

Gonzalez, M.C., Hidalgo, C.A., & Barabasi, A.L. (2008). Understanding individual human mobility patterns. Nature, 453
(7196), 779–782. doi:10.1038/nature06958

International Telecommunication Union (2015) “Telecommunication/ICT Development Report and Database,” http://
data.worldbank.org/indicator/IT.CEL.SETS.P2.

Lee, D.D., & Seung, H.S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755),
788–791. doi:10.1038/44565

Lin, C.B. (2007). Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19(10), 2756–
2779. doi:10.1162/neco.2007.19.10.2756

Liu, Y., Wang, F., Xiao, Y., & Gao, S. (2012). Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled
taxi data in Shanghai. Landscape and Urban Planning, 106(1), 73–87. doi:10.1016/j.landurbplan.2012.02.012

Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment,
102(1), 146–160. doi:10.1016/j.rse.2006.02.010

Mesev, V. (1998). The use of census data in urban image classification. Photogrammetric Engineering and Remote
Sensing, 64(5), 431–436.

Meyer, W.B., & BL Turner, I. (1994). Changes in land use and land cover: A global perspective (Vol. 4). Cambridge
Cambridge University Press.

Pei, T., Sobolevsky, S., Ratti, C., Shaw, S.L., Li, T., & Zhou, C. (2014). A new insight into land use classification based on
aggregated mobile phone data. International Journal of Geographical Information Science, 28(9), 1988–2007.
doi:10.1080/13658816.2014.913794

Platt, R.V., & Rapoza, L. (2008). An evaluation of an object-oriented paradigm for land use/land cover classification. The
Professional Geographer, 60(1), 87–100. doi:10.1080/00330120701724152

Reades, J., Calabrese, F., & Ratti, C. (2009). Eigenplaces: Analysing cities using the space-time structure of the mobile
phone network. Environment and Planning B: Planning and Design, 36(5), 824–836. doi:10.1068/b34133t

Soto, V., & Frías-Martínez, E. (2011), “Automated land use identification using cell-phone records,” In Proceedings of The
3rd ACM International Workshop on MobiArch, ACM, pp. 17–22.

Tatem, A.J., Nayar, A., & Hay, S.I. (2006). Scene selection and the use of NASA’s global orthorectified Landsat dataset for
land cover and land use change monitoring. International Journal of Remote Sensing, 27(14), 3073–3078.
doi:10.1080/01431160600589195

Thakur, G.S., Bhaduri, B.L., Piburn, J.O., Sims, K.M., Stewart, R.N., & Urban, M.L. (2015), “PlanetSense: A real-time
streaming and spatio-temporal analytics platform for gathering geo-spatial intelligence from open source data,”
in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM,
p. 11.

Toole, J.L., Ulm, M., González, M.C., & Bauer, D. (2012), “Inferring land use from mobile phone activity,” in Proceedings
of the ACM SIGKDD international workshop on urban computing, ACM, pp. 1–8.

Wu, S.S., Qiu, X., Usery, E.L., & Wang, L. (2009). Using geometrical, textural, and contextual information of land parcels
for classification of detailed urban land use. Annals of the Association of American Geographers, 99(1), 76–98.
doi:10.1080/00045600802459028

Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., & Wu, J. (2011). Monitoring urban expansion and land use/land cover
changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environmental
Monitoring and Assessment, 177(1–4), 609–621. doi:10.1007/s10661-010-1660-8

Yuan, F., Sawaya, K.E., Loeffelholz, B.C., & Bauer, M.E. (2005). Land cover classification and change analysis of the twin
cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment, 98
(2), 317–328. doi:10.1016/j.rse.2005.08.006

Yuan, J., Wang, D., & Li, R. (2014). Remote sensing image segmentation by combining spectral and texture features.
IEEE Transactions on Geoscience and Remote Sensing, 52(1), 16–24. doi:10.1109/TGRS.2012.2234755

JOURNAL OF LAND USE SCIENCE 153

https://doi.org/10.1038/nature06958
http://data.worldbank.org/indicator/IT.CEL.SETS.P2
http://data.worldbank.org/indicator/IT.CEL.SETS.P2
https://doi.org/10.1038/44565
https://doi.org/10.1162/neco.2007.19.10.2756
https://doi.org/10.1016/j.landurbplan.2012.02.012
https://doi.org/10.1016/j.rse.2006.02.010
https://doi.org/10.1080/13658816.2014.913794
https://doi.org/10.1080/00330120701724152
https://doi.org/10.1068/b34133t
https://doi.org/10.1080/01431160600589195
https://doi.org/10.1080/00045600802459028
https://doi.org/10.1007/s10661-010-1660-8
https://doi.org/10.1016/j.rse.2005.08.006
https://doi.org/10.1109/TGRS.2012.2234755

	Abstract
	1.  Introduction
	2.  Data
	2.1.  CDR data
	2.2.  Open-sourced POI data
	2.2.1.  OSM data
	2.2.2.  Facebook POI data


	3.  Methodology and results
	3.1.  Inferring land use from mobile phone call activities
	3.2.  Evaluation based on the POI data from OSM
	3.3.  Evaluation based on the POI data from Facebook
	3.4.  Tracking daily land use changes

	4.  Conclusion and discussion
	Note
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	References



