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Abstract

Collaborations are pervasive in current science. Collaborations have been stud-

ied and encouraged in many disciplines. However, little is known about how a

team really functions from the detailed division of labor within. In this

research, we investigate the patterns of scientific collaboration and division of

labor within individual scholarly articles by analyzing their co-contributorship

networks. Co-contributorship networks are constructed by performing the one-

mode projection of the author–task bipartite networks obtained from 138,787

articles published in PLoS journals. Given an article, we define 3 types of con-

tributors: Specialists, Team-players, and Versatiles. Specialists are those who

contribute to all their tasks alone; team-players are those who contribute to

every task with other collaborators; and versatiles are those who do both. We

find that team-players are the majority and they tend to contribute to the 5 most

common tasks as expected, such as “data analysis” and “performing experi-

ments.” The specialists and versatiles are more prevalent than expected by our

designed 2 null models. Versatiles tend to be senior authors associated with

funding and supervision. Specialists are associated with 2 contrasting roles: the

supervising role as team leaders or marginal and specialized contributors.

1 | INTRODUCTION

In science, many solitary individuals' efforts are appreci-
ated and emphasized. For example, people often link
some individuals' names with great findings, such as Sig-
mund Freud with the Interpretation of Dreams, Albert
Einstein with the Theory of Relativity, and John von
Neumann with the Theory of Games and Economic
Behavior. However, more scientific and industrial pro-
gress that has made history came from powerful collabo-
rations. In recent decades, more and more research has
been conducted by groups of scholars. For example,
thanks to the joint efforts of Watson, Crick, Franklin,

and Wilkins, the double-helix structure of DNA was dis-
covered, which is fundamental to modern biotechnology
(Science History Institute, 2017). Later, since 1990,
20 institutions from six countries participated in the great
exploration of sequence and map of all human genes,
known as the Human Genome Project. After more than
20 years of hard work, scientists were able to present
nature's complete genetic blueprint of a human being;
such findings greatly contribute to treat, cure, and pre-
vent various human diseases (National Human Genome
Research Institute, 2019). With the increasing complexity
of problems to solve, such as designing a new functional
protein or developing self-driving cars, collaboration is
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necessary. When checking recent leading studies, we find
that many of them have a long list of contributors or
acknowledgments, which reveal the intensity of collabo-
rations. Collaboration can bring many advantages; for
example, it can decrease the cost (Katz & Martin, 1997),
bring in more expertise, and thus boost efficiency
(Goffman & Warren, 1980), and increase scientific popu-
larity, visibility, and recognition (O'Connor, 1970; Price &
Beaver, 1966). Collaborations make the impossible possi-
ble. Many believe in the power of scientific collaborations
and have spent efforts to find collaborators and work in
teams (Fox & Faver, 1984).

The increasing demand for scientific collaboration
has attracted numerous scholars to study the mechanism
of collaboration from different perspectives, such as
bibliometrics (e.g., Ding, Foo, & Chowdhury, 1998;
Glänzel, 2002), social network analysis (e.g., Barabâsi
et al., 2002; Newman, 2004; Zhang, Bu, Ding, & Xu,
2018), and qualitative approaches (e.g., Birnholtz, 2006;
Hara, Solomon, Kim, & Sonnenwald, 2003; Lee & Boze-
man, 2005;). Despite some differences, in bibliometrics
most of the research uses coauthorship to measure scien-
tific collaborations (Milojevi�c, 2010). Studies using
coauthorship usually assume that each collaborator
shares equal contributions to their scientific work and
based on that they build coauthor networks to study sci-
entific collaboration (e.g., Birnholtz, 2006; Chompalov,
Genuth, & Shrum, 2002; Newman, 2004). However, little
is known about how each collaborating individual works
in a team. Do they still collaboratively complete the
whole procedure of work? Or do they divide the labor,
and thus each only accomplishes certain tasks within a
team and then the final goal is achieved by assembling
all these tasks?

Early in the about 4th century BC, Plato stated the
importance of the division of labor for the emergence of
cities in his Republic; Xenophon also noticed the exis-
tence of specialization and mentioned that the division of
labor enhances productivity in his Cyropaedia. Centuries
ago, Smith (1776) discovered that division of labor, a
proper division and combination of different operations
in manufacturing, improves the efficiency of production;
it further impacts our whole modern society as it shapes
how people are interacting with each other to achieve
goals (e.g., Durkheim, 1933; Earley, 1993; Ezzamel &
Willmott, 1998). For this concern, in a team of various
forms, how the tasks are divided and performed among
the members determines its performance (Delfgaauw,
Dur, & Souverijn, in press). Thus, there is a great need to
examine the mechanisms of teamwork via investigating
the division of labor in teamwork (or collaboration). In
scientific collaborations, faster and greater scientific
innovations are always encouraged. Therefore, it is of

greater value to know how to achieve a successful scien-
tific collaboration by a proper division of labor—which
tasks each team member should take on and what kind
of collaborations enables collaborators to better achieve
their scientific goals (Hara et al., 2003; Ilgen, Hollenbeck,
Johnson, & Jundt, 2005; Leahey & Reikowsky, 2008;
Melin, 2000).

Currently, only a few have examined the scientific col-
laboration at the level of task assignments (Corrêa, Silva,
Costa, & Amancio, 2017; Jabbehdari & Walsh, 2017;
Larivière et al., 2016; Yang, Wolfram, & Wang, 2017).
However, their focus was on tasks globally, rather than
from the perspective of interactions within each team. For
example, Jabbehdari and Walsh (2017) estimated the like-
lihood of specialist authors by checking the authors' tasks
via a survey of 8,864 articles. Yang et al. (2017) analyzed
the relationship between authors' tasks in the contribution
lists and their positions in the bylines. There is a lack of
research investigating the detailed division of labor within
every collaboration. Here, we comprehensively analyze
how members in a team divide the labor by recognizing
and examining the different roles they play in a large-scale
data set. Our study helps understand scientific collabora-
tions in depth by revealing the fundamental mechanisms
of how collaborative teams function. Inspired by the
approaches to using the contribution statements to study
author contribution patterns (Corrêa Jr et al., 2017;
Larivière et al., 2016; Sauermann & Haeussler, 2017), we
analyze the networks of authors and tasks from more than
130,000 articles published in PLoS journals. First, we study
the density of the co-contributorship networks, which
reflects the degree of labor division. We then define three
types of author contributions—specialists, team-players,
and versatiles—based on the co-contributorship networks,
and examine the abundance of these types of contributors.
We find that team-players tend to contribute to the five
most common tasks, such as “data analysis” and “per-
forming experiments.” Versatiles tend to be senior authors
associated with funding and supervision. Specialists are
associated with two contrasting roles: the supervising role
as a team leader or a marginal and specialized contributor.
These features will also facilitate further assessing the divi-
sion of labor and specialization in teams in the future.

2 | RELATED WORK

2.1 | Division of Labor in Teamwork
Studies

Teamwork is a complex process that involves interactions
between members with different expertise and skills with
a spectrum of degrees of division of labor. Ilgen et al.
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(2005) argued that the classic IPO (input-process-output)
model is insufficient to describe the process of teamwork,
due to its complexity. LePine et al.'s (2008) meta-analysis
found that teamwork generally includes three general
processes: mission analysis, action process, and interper-
sonal process; each of them includes several subpro-
cesses. In the action process, Earley (1993) observed that
the psychological statures of team members can affect
their diverse collaboration patterns with others, individu-
ally or collectively. Studies also extend to classifying task
types (e.g., Salas, Sims, & Burke, 2005) and team roles
(e.g., Belbin, 2012). For instance, Belbin found that a
team full of “Apollos” (i.e., geniuses) usually exhibits ter-
rible performance, and that role allocation is necessary
for successful teamwork.

Smith (1776) argued that division of labor is a strong
impetus for increased productivity and specializations.
For example, factory workers can be distributed to spe-
cific tasks in the pipeline, so that they can be more con-
centrated on fine-grained tasks and improve their skills
(Leroy, 2009). The degree of division of labor was
believed to be limited only by the number of laborers in
the market (Stigler, 1951). Meanwhile, if the tasks are
complex and interdependent, the coordination cost can
be a significant limiting factor on specialization
(Becker & Murphy, 1992). Therefore, the extent of divi-
sion of labor may be largely affected by the nature of the
tasks.

2.2 | Scientific Collaboration and
Division of Labor

Scientific collaboration as a particular form of teamwork
mainly focusing on scientific activities with high
intelligence and innovation increasingly prevails in aca-
demia (Fox & Faver, 1984; Guimerà, Uzzi, Spiro, &
Amaral, 2005; Katz & Martin, 1997; Larivière, Gingras,
Sugimoto, & Tsou, 2015; Wuchty, Jones, & Uzzi, 2007).
In this form of teamwork, division of labor is commonly
suggested by some studies (Birnholtz, 2006; Fox & Faver,
1984; Kraut, Galegher, & Egido, 1987; Leahey &
Reikowsky, 2008). For example, Melin (2000)
classified scientific teams into two categories: one where
everyone in the team is given a clear task assignment and
the other where everyone works together. The two types
are defined in a similar way by Hara et al. (2003) as
“complementary” and “integrative” teams. Chompalov
et al. (2002) classified teams into four categories based on
their topological features: bureaucratic, leaderless, non-
specialized, and participatory teams.

Current studies investigate scientific collaboration via
coauthorship network analysis (Ahuja, 2000; Newman,

2004; Xie, Ouyang, Li, Dong, & Yi, 2018; Yan & Ding,
2009) or using case studies (Amabile et al., 2001) and
interviews (Birnholtz, 2006; Chompalov et al., 2002;
Chung, Kwon, & Lee, 2016; Fox & Faver, 1984). These
studies reveal several important features in collabora-
tions, such as homophily (Zhang et al., 2018), transitivity
(Newman, 2004), and preferential attachment (Milojevi�c,
2010). They also suggest that collaboration improves pro-
ductivity in science (Lee & Bozeman, 2005) and collabo-
rative research tends to attract more citations (Larivière
et al., 2015). However, such coauthorship studies usually
overlooked the division of labor in scientific collaboration
at large; and some of them only relied on a limited num-
ber of cases. Only a few studies started investigating the
tasks conducted by the members of a team. But there is
still a lack of research investigating the roles scientists
have played in every collaboration. These drive us to use
author contribution statements embedded in the full text
of scientific articles provided by authors to investigate
how scientific teams design their tasks and distribute
them to collaborators, which is the process of division of
labor. Thus, we can investigate the scientific collabora-
tion between coauthors at the task level and reveal differ-
ent roles played by these authors.

2.3 | Contribution Statement for
Scientific Collaboration Studies

Although the author contribution patterns in scholarly
articles have been of interest in scientometrics
(e.g., Giles & Councill, 2004; Laudel, 2002), it was the
wide adoption of the contribution disclosure policies that
enabled large-scale data-driven studies (Allen, Scott,
Brand, Hlava, & Altman, 2014; Brand, Allen, Altman,
Hlava, & Scott, 2015; Larivière et al., 2016). For example,
Larivière et al. (2016) examined the forms of division of
labor across disciplines, the relationship between contri-
bution types (i.e., writing the article, performing the
experiments, conceiving ideas, analyzing data, and con-
tributing tools) and authors seniority, such as academic
ages and that between types of tasks and byline positions.
They found that authors contribute to their studies
unevenly across disciplines; that most authors are identi-
fied to contribute to writings; and that those who write
the articles usually design the studies and those providing
materials usually do not perform an experiment, and vice
versa. They also found that senior authors usually do
fewer tasks such as conducting experiments than junior
ones, but do more tasks such as writing articles and con-
tributing tools and materials. First and last authors usu-
ally contribute more tasks than middle ones to their
studies. Corrêa Jr et al. (2017) placed more emphasis on
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the relationship between authors' rank positions and
their corresponding contributions. They collected author
contribution statements in PLoS One, identified five com-
mon tasks, and built a bipartite graph for each article,
where authors and the five tasks are the two groups of
nodes and an edge between author and task means the
author performed the task, treating tasks as equal contri-
butions. Using the average number of tasks authors per-
formed across articles, they found that usually the first
and the last authors contribute more to their articles than
middle authors, which echoes the findings by Larivière
et al. (2016). They further identified three general pat-
terns of author contribution with their byline position:
the contribution increases with authors' ranks, the contri-
bution decreases with authors' rank, and the contribution
decreases then increases with the author's ranks.
Sauermann and Haeussler (2017) presented two studies:
the first investigated how informative the byline position
of an author is about the type and broadness of the
author's contribution using more than 12,000 PLoS One
articles; the second reported how author contribution
statements are used and scholars' several concerns on
authorship and author contribution statement after sur-
veying nearly 6,000 corresponding authors from PLoS
One and PNAS (Proceedings of the National Academy of
Sciences of the United States of America). The two data
sources suggest no significant differences. They also
found similar observations that the first and the last
authors contribute more than the middle authors to their
articles (Corrêa Jr et al., 2017; Larivière et al., 2016). In
addition, they also observed that corresponding authors
are more likely to be the last authors. First authors usu-
ally tend to make more contributions than other authors.
When the team gets larger, authors tend to perform fewer
tasks, suggesting a stronger degree of division of labor.
The top 10% most cited articles maintain similar results
from the models generated from the full data set,
suggesting the reliability of the author contribution state-
ments from PLoS One articles.

To sum up, as the division of labor has been an impor-
tant driving force in modern society (e.g., Durkheim, 1933;
Earley, 1993; Ezzamel & Willmott, 1998), there has been
much interest in studying the division of labor or roles in
teams, particularly in scientific collaboration teams. The
author contribution statements can serve as a good proxy
to concretely measure the role allocation and division of
labor in individual scientific collaborations. Given the
complex nature of scholarly work, it is of great value to
ask how a team can achieve a successful scientific collabo-
ration, how the division of labor occurs in scientific collab-
oration, and what the patterns of role and labor
distribution are (Hara et al., 2003; Ilgen et al., 2005;
Leahey & Reikowsky, 2008; Melin, 2000).

3 | METHODOLOGY

This section explains our data set and approach to con-
structing and analyzing the contribution network. First,
we collected 138,787 full-text articles from PLoS, from
which we extracted and parsed the author contribution
statements. From each statement, we extracted author–
task pairs, which we assembled to construct an author–
task contribution network for each article. The one-mode
projection of this network produces a co-contributorship
network, from which we define the three types of collab-
orators. Finally, we further investigated the tasks they
partook in using content analysis.

3.1 | Data

3.1.1 | Full-text data source

PLoS is one of the largest open-access journal article pub-
lishers in the world. Under its authorship policy1 (which
accords with CRediT Taxonomy2 since 2016), authors are
required to state their agreed contributions in their arti-
cles. To collect author contribution statements, nearly
170,000 full-text articles published in PLoS between 2006
and 2015 were harvested in XML format.

In each XML file, the author contribution statement
is either embedded in the tag of “<fn fn-type = 'con'>”
(see the sample article in Figure 1) or in the acknowl-
edgement part (a few of them).

3.1.2 | Author–task pairs

We used the XML package in Python 2.7 to extract the
contribution statements. Then we used regular expres-
sions to extract author–task pairs from each statement of
every article. Table 1 shows the parsed data from one
sample article. We did not separate commonly grouped
tasks into subtasks. For instance, we consider

FIGURE 1 An example author contribution statement of a

sample article in XML format [Color figure can be viewed at

wileyonlinelibrary.com]
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“Contributed reagents/materials/tools” or “conceived
and designed the experiments” as single tasks of
their own.

The final collected 138,787 articles belong to seven
journals in PLoS, as shown in Table 2. The table suggests
that 90% of articles are from PLoS One, and the other 10%
belong to the other six journals by PLoS. The distribution
of those articles by year in our data set is presented in
Figure 2, suggesting most of the articles were published
before the middle of the year of 2016, when the CRediT
Taxonomy was launched for regulating author contribu-
tion statements.

3.2 | Co-contributorship Network
Construction

3.2.1 | Definitions

Figure 3 illustrates different types of collaboration pat-
terns that one can observe from co-contributorship net-
works. In Figure 3a, every author worked collectively on
each task, forming a complete graph. Under this sce-
nario, the division of labor does not occur, as everyone
works on all tasks collectively. By contrast, in Figure 3c,
every author worked on his/her tasks independently,

thus having a strong division of labor. In our data set, we
expect to see the whole spectrum from no-division to
complete division, while most collaborations would occur
somewhere in the middle (e.g., Chompalov et al., 2002;
Fox & Faver, 1984; Heffner, 1979).

Building on this intuition, we formally consider a
weighted undirected co-contributorship network for each
article, which can be obtained by performing a special
one-mode projection to the author–task network. This pro-
cess is different from the standard one-mode projection
because we also create self-edges if a task is performed by
only one person. In the co-contributorship network, each
node represents an author (collaborator). An edge between
authors means that there is at least one task where two
authors collaborated. The weight of each edge represents
the number of tasks co-performed by the two authors. If a
task is performed by more than two authors, every possi-
ble pair of authors will have an edge between them. If a
task is performed by a single person, the node (collabora-
tor) will have a self-loop, and its weight is decided by the
number of tasks that the author performed independently.
As an example, Figure 3d demonstrates a co-
contributorship network between four authors in one arti-
cle. The weight of the edge (C2, C3) is three, which means
authors C2 and C3 worked together on three different
tasks. The weight for the self-edge of C1 is two, indicating
that C1 independently worked on two different tasks
alone.

3.2.2 | Types of collaborators

Based on its connectivity patterns, each node is classified
into one of the three roles: team-players, specialists, and
versatiles, as shown in Figure 3e. Team-players are those
who do not have any self-edges; they performed all their

TABLE 1 Author–task pairs of a sample article

Id Authors Task

1 EG; ES; JD Conceived and designed the
experiments

2 ES; JD; MH; JP; MS Performed the experiments

3 EG; ES; FC; JD; JP;
MS

Analyzed the data

4 ES; JD; MH; JP; MS Contributed reagents/materials/
tools

5 EG; ES Wrote the article

TABLE 2 Journal distribution of our collected author

contributions

Journal # of articles Ratio (%)

PLoS One 12,422 89.5%

PLoS genetics 3,919 2.8%

PLoS pathogens 3,445 2.5%

PLoS computational biology 3,067 2.2%

PLoS neglected tropical diseases 2,783 2.0%

PLoS biology 921 0.7%

PLoS medicine 432 0.3%

FIGURE 2 Yearly distribution of articles in our data set

[Color figure can be viewed at wileyonlinelibrary.com]
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tasks with someone else. Specialists are those who have
only self-edge(s) (e.g., C1); they are those who finish their
tasks on their own. Versatiles are those who have both
self-edges and normal edges (e.g., C2).

3.2.3 | Null models

To estimate the expected prevalence of each type of col-
laborators, we adopt two null models to the author–task
contribution networks: the configuration model

(Molloy & Reed, 1995) and the Erdős–Rényi random
graph model (Erdös & Rényi, 1959). In the configuration
model (CFM), the degrees of nodes are fixed, while the
actual connections are randomized. In creating the net-
works, we reject the cases with multi-edges. Finally, we
project this author–task bipartite graph to a co-
contributorship network (see Figure 4a). For the Erdős–
Rényi random graph model (ERM), we fix the number of
edges in the author–task graph and randomize the con-
nections without conserving the degree sequences. To
make the random graph realistic, we enforce the

FIGURE 3 Modes of division of

labor in teams (a–c); co-contributorship
network (d); and types of collaborators

(e) [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Producing null models using CFM and ERM. (a) Configuration model (CFM), where the degree sequences on both sides

are preserved. (b) Erdős–Rényi random graph model (ERM), where only the total number of edges is preserved with every node having at

least one connection [Color figure can be viewed at wileyonlinelibrary.com]
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connectivity of the network—each author node and each
task node should have at least one edge. After obtaining
an initial random graph, we perform a rejection sampling
to obtain a graph where every node has at least one con-
nection (see Figure 4b). By examining the differences
between the actual networks and the two null models,
we put our measurements in a reasonable context of ran-
dom cases.

3.3 | Research Hypotheses

Using the networks we built above, we sought to answer
three questions concerning the division of labor within
teams.

RQ1 Is division of labor common in scientific
collaborations?

To answer this question, we examined the density of
each bipartite graph we built and compared it to the expec-
tation from their corresponding ER random graphs, which
maintains the number of edges between authors and tasks.
Ideally, if the division of labor is not necessary for scientific
collaboration, the graph density distribution of all the net-
works we built will follow a binomial distribution, where
the chance to connect an author and a task in an author–
task bipartite network is equal. So our first null hypothesis
for this question will be:

H01 There are no differences in the graph density distribu-
tion between the real-world author–task bipartite net-
works and the randomised ones.

RQ2 Concerning the three types of collaborators, are they
more common than one another in scientific
collaboration?

To answer this question, we examined the distribu-
tion of the three types of collaborators in their scientific
collaborations at an article level from three perspectives:
the existence of the collaborators, the ratios of them in all
of the publications, and the ratios of them in the publica-
tions with nonteam-players. We also designed the ER
and the CRF models for each co-collaboratorship net-
work to remove random factors from the observations. So
our null hypotheses for this question will be:

H2 The three types of collaborators are equally common
in scientific collaborations.

H3 The ratios of the three types of collaborators in all pub-
lications are equal to each other.

H4 The ratios of the three types of collaborators in the
publications with nonteam-players are equal.

RQ3 Do the three types of collaborators perform different
tasks in their collaborations against each other?

To answer this question, we examined the distribu-
tion of the tasks that the three types of authors performed
in their scientific collaborations at an article level in two
parts: the five common tasks, and the rest less frequent
tasks in all publications. The ER and the CRF models
served to remove random factors from the observations.
So our null hypotheses for this question will be:

H5 The three types of collaborators contribute equally to
the five common tasks in their scientific collaborations.

H6 The three types of collaborators contribute equally to
the less frequent tasks in their scientific collaborations.

Following the three questions above with six null
hypotheses, we used the author co-contributorship net-
works built from each article's author contribution state-
ment to address these questions and hypotheses.

4 | RESULTS AND DISCUSSION

4.1 | Overview

More than 90% of the articles in our data set were written
by at least two authors, agreeing with the previous observa-
tions that collaborative studies are dominating (Guimerà
et al., 2005; Wuchty et al., 2007). 87% of articles were writ-
ten by teams of no more than 10 members; and 99% of
teams had no more than 20 authors, including 1,370
single-authored articles (8.2%), shown in Figure 5a. In the
following analyses, we focus on the articles with fewer than
20 authors in our data set because they occupy the vast
majority of the data set and it is easier to implement the
null models for the articles with fewer authors.

To depict the division of labor in scientific collabora-
tion, we first calculate the normalized graph density of
each author–task bipartite graph compared with one null
model generated by Erdős–Rényi random bipartite graph
(detailed below). The normalized graph density is calcu-
lated using Equation (1):

NGD=
k-max Nt,Nað Þ

Nt ×Na-max Nt,Nað Þ ð1Þ

where k represents the number of edges in the graph, Nt

number of tasks, and Na the number of authors. So
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Nt × Na denotes the maximum number of edges in an
author–task bipartite graph and max(Nt, Na) represents
the minimum when all nodes should be connected.3

To generate our null model here, another Erdős–
Rényi random bipartite graph was adopted, using G(Nt,
Na, p

jhNai) where pjhNai is the probability for an author
to perform a task in article j which contains Na collabora-
tors (Batagelj & Brandes, 2005), estimated by using
Equation (2):

p j Naih =
N j

e=Na

�Nt
ð2Þ

In Equation (2), N j
e is the number of edges in the

author–task bipartite graph of article j; �Nt is the mean
number of tasks in all articles with Na collaborators; and
N j

e =Na the average number of tasks per collaborator per-
formed in Na-author article j. Then we use Equation (1)
to calculate the normalized graph density for these ran-
dom graphs.

Figure 5b shows that the author–task bipartite graphs
in our data set present larger variance in the degree of
labor division, compared with the null model that
assumes a homogeneous contribution from authors. By
examining two ends of the x-axis, it is found that both a
strong division of labor and no division of labor are more
probable than expected by the homogeneous null model.
This might suggest that scientific teams tend to employ a
wider variety of collaboration strategy, although our

results may be explained by the heterogeneous author
degree distribution (i.e., large variation in the number of
tasks one performs).

Figure 6 shows the graph density of groups with a dif-
ferent team size. A clear trend can be observed that the
graph density distribution of the real-world author–task
bipartite graphs is more and more divergent from the
density expected by the null model when the team size
grows. Specifically, the author–task graphs in real collab-
orations tend to be sparser than expected in the null
model, which might suggest a stronger degree of labor
division in larger teams.

4.2 | Quantifying Types of Collaborators

In this section we examine the prevalence of the three
types of collaborators. First of all, we examine how many
articles involve these three types of collaborators. We cal-
culate the ratio of the articles containing collaborator
type ci, given team size k, PRk

Ci
, using Equation (3) as

follows:

PRk
Ci
=
Nk

ci

Nk ,ci∈ specialist,versatiles, team−playerf g ð3Þ

where Nk is the number of articles with k authors, and
Nk

ci is the number of articles with k authors that contain
collaborator type ci.

FIGURE 5 Author distribution by team size (a); and normalized graph density distribution in author–task bipartite graph (b)
(*denotes the p-value from Kolmogorov–Smirnov test against the null model, *p-value <.05, **p-value < .01, ***p-value < .001) [Color

figure can be viewed at wileyonlinelibrary.com]
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Figure 7 shows that most articles have team-players,
and that is expected by both null models (in A and B).
There is a slight increase in the number of articles with

specialists as team size increases. The articles with versa-
tiles become less common as the size of teams increases,
and the final ratio of such articles stabilizes around 25%.

FIGURE 6 Graph density against null model by team size (*denotes the p-value from Kolmogorov–Smirnov test against the null

model, *p-value < .05, **p-value < .01, ***p-value < .001) [Color figure can be viewed at wileyonlinelibrary.com]
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When compared with the ERM null model, which shuf-
fles author and task nodes in author–task bipartite graphs,
nonteam-players are more common in real-world collabora-
tions than expected. More articles involve versatiles in real
scientific collaborations. Specialists, instead of disappearing
in larger teams, as ERM suggests, keep playing a role in
teams whose sizes vary from 2 to 20. This might suggest
that nonteam-players are associated with special and preva-
lent types of contributions in scientific collaborations.

Our results also suggest that the actual prevalence of
each author type closely matches the expectation from
the CFM null model, which shuffles authors' specific con-
tributions in the bipartite graphs. This indicates that the
degree sequence—how many tasks are performed by
each author—accurately reproduces the co-contribution
patterns that are observed.

To observe three types of collaborators' existence in
scientific collaborations, we calculate the average number
of each type of collaborators Ciin teams by team size k,
using Equation (4) as follows:

ACk
i =

TCk
i

Nk ,ci∈ specialist,versatile, team−playerf g,2≤ k≤ 20

ð4Þ

where Nk is the number of teams with team size k, and
TCk

i is the total number of collaborator i in k-authored
publications. The results in Figure 7A suggest that, on
average, each article contains around 0.075 specialists,
0.35 or more versatiles, and the rest are team-players when

the team size is greater than five. Specifically, when the
team size is smaller than eight, the number of specialists
increases along with the increase of team size and peaks at
0.1, which is well captured by both our null models. When
team size continues growing, the real number of specialists
fluctuates around the top, whereas that expected by ERM
starts to diminish (shown in Figure 8a, left). Versatiles are
more prevalent than specialists in scientific collaborations,
especially among smaller teams. When the team grows
larger, the average number of versatiles continues decreas-
ing to 0.35 per article, then maintains stable. Despite the
decreasing average number of versatiles in teams, it is still
more than expected by ERM, in which the average num-
ber of versatiles keeps declining when the team size is
larger than 10. Team-players dominate the participation in
scientific collaborations, which is well captured by our two
null models. The ERM null model only keeps the number
of task assignments, while the CFM model sets some rules
of labor division, since it restricts how many tasks one
author would participate in and how many participants
are involved for each individual task. By comparing the
figures of the real situation in Figure 8a with the two null
models, we could see that there exists a strong division of
labor and that there are still more specialists and versatiles
than we would expect from the random cases among the
collaborators. A downtrend of the number of versatiles
along with the increase of team size is understandable,
since the total number of tasks will not have an unlimited
growth, so some authors may collaborate more with others
when there are more team members. However, the slight

FIGURE 7 Frequency

distribution of articles containing

given collaborator type by team size:

(a) against ERM null model; and (b)
against CFM null model (*denotes
the p-value from K-S test against the

null model, *p-value < .05, **p-value
< .01, ***p-value <.001) [Color
figure can be viewed at

wileyonlinelibrary.com]
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increase or unchanged number of specialists demonstrates
that there always exist some tasks that should be completed
individually; the existence of specialists is important even in
the environment of heavy collaboration. The distinction
between the figures of nonteam-players for the real-world col-
laborations and ERM indicates that the existence of nonteam-
players is not because of small teams or limited labors in scien-
tific collaborations but for particular purposes left for us to
uncover. We are more interested in understanding the struc-
ture of scientific teams when they involve heterogeneous col-
laborators. Thus, we exclude all the articles that were
collaborated by only team-players and plot the average num-
ber of three different collaborator types among the remaining
ones in Figure 8b. In general, the team structure is quite stable
with nonteam-players among all different team sizes: 1.25 spe-
cialists on average, 1.3 versatiles on average, and with the rest
team-players. More than often, a team includes one or two
nonteam-players to perform their research. Despite that, when

teams grow larger than 15 participants, more nonteam-
players, specialists, or versatiles, could contribute to the teams
(suggested by the error bars). Team-players, similarly, still
dominate a team. The null models, however, do not show
great disparity from the real collaborations in the team struc-
tures. This indicates when teams include nonteam-players,
there is no big variance among teams, especially for smaller
teams whose sizes are less than 10.

We continue our focus on the overall population of
the three types of collaborators among all the publica-
tions. We modify Equation (4) and calculate RCk

i , the
ratio of collaborator Ci given by team size (k), using Equa-
tion (5) as follows:

RCk
i =

TCk
i

k ×Nk ,ci∈ specialist,versatile, team−playerf g,2≤ k≤ 20

ð5Þ

FIGURE 8 (a) Types of collaborators in publications; (b) Team structure in NTAs (nonteam-player-involved articles); and (c)
Population ratio of types of collaborators. From left to right in each subplot are specialists, versatiles, and team-players; error bars in plots

represent 95% confidence intervals generated via 10,000 bootstrapping iterations [Color figure can be viewed at wileyonlinelibrary.com]
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where Nk is the number of teams with team size k, and
TCk

i is the total number of collaborator i in k-authored
publications. The results of Equation (4) are the results
from Equation (3) normalized by team size accordingly
(shown in Figure 8c). Since the authors in our whole data
set are not disambiguated, the population character of
these collaborators reflects how frequently a certain role
(as three types of collaborators) has been played in scien-
tific collaborations.

Figure 8c demonstrates that nonteam-players are the
minority in scientific collaborations, as suggested above,
especially for specialists. In particular, when the team
size grows, the ratio of specialists among collaborators
drops from 15% to 0.5%, then remains stable; the ratio of
versatiles also falls from 55% to 3%, then remains stable.
Team-players, on the contrary, show an opposite trend,
keeping an increase from around 45% to around 95%.
Both our two null models also roughly capture this trend.

To sum up, team-players are the major collaborators
in scientific collaborations. Nonteam-players are the
minority, but they widely exist in small teams (a size no
more than five) and also exist in larger teams (a size
larger than five) with a relatively small and stable ratio.

A possible reason for these observations is that more
team members enable division of labor and specialization
(Smith, 1776) rather than wiping out nonteam-players.
Some of the tasks performed by versatiles in smaller
teams can be distributed to extra team members,
accounting for more team-players. Regarding specializa-
tion, some team members can focus on particular tasks
when more members are added to the team. For instance,
in a dyadic team between advisor and advisee, besides
supervision, the advisor may also need to take up some
tasks such as writing and data analysis to accelerate the
research progress. When more collaborators get involved,
the advisor may spare more time and only focus on the
supervision of advisees and funding application. Other
collaborators can share the burden of the advisor (Bray,
Kerr, & Atkin, 1978) when the advisor could be a special-
ist and the other collaborators can function as team-
players. In addition, specialized collaborators can be
invited to the team to perform some special tasks as
specialists (or Specialists proposed in Belbin, 2012).
The benefit of this evolution—division of labor and
specialization—can increase the productivity of a team.
On the other hand, however, more collaborators could
bring in the so-called “Ringelmann effect” (Ingham,
Levinger, Graves, & Peckham, 1974) or “social loafing”
(Earley, 1993), which means collaborators of a team tend
to become increasingly less productive as the size of their
team increases. However, this increasing tendency of spe-
cialization reaches saturation instead of excessively
extending, which might be taken as the consideration of

a huge coordination cost that specialization may lead to
(Becker & Murphy, 1992).

Randomly assigning tasks to authors (in ERM) leads
to more nonteam-players in smaller teams (≤10) and less
in larger teams (≥15). By contrast, in real scientific col-
laborations, nonteam-players maintain a relatively stable
ratio in smaller teams and also exist in larger teams. Such
existence is surprising in larger teams, since adequate
human resource facilitates us to perform tasks collabora-
tively to achieve seeming efficiency and effectiveness.

Also, it is worth noticing that versatiles tend to be
more favorable than expected in scientific teams as
suggested by Figure 7. On the contrary, fewer versatiles
in the ERM plot may imply that team-players are more
welcome when they can also work independently as ver-
satiles. The possible reason for this can be that a moder-
ate degree of specialization improves the efficiency of the
collaboration when some tasks are performed alone and
some collaboratively (Becker & Murphy, 1992).

4.3 | Understanding Collaborators' Tasks

After quantitatively describing the prevalence of the three
types of collaborators in our data set, here we analyze their
characteristics by examining the tasks in which they par-
ticipated. We look at the most common five tasks
(e.g., Corrêa Jr et al., 2017; Larivière et al., 2016) as well as
the other less frequent tasks. Using the data generated by
our null models used in the previous section, that is, CFM
and ERM, we can also investigate the different patterns in
task distributions between real collaborations and two ran-
dom scenarios for different purposes. CFM controls
authors' and tasks' degree sequence in an author–task net-
work; thus, the differences from real collaborations high-
light the differences in task-performing, which will suggest
prevailing patterns of different types of authors in reality.
ERM only controls the number of edges in the networks.
The corresponding results can be used to examine whether
these task patterns can be generated randomly. We extract
the top 100 most frequent tasks for each type of collabora-
tors from the three data sets (including the two generated
null model data sets) and consolidate similar tasks. As a
result, 52 unique tasks are obtained.

4.3.1 | Five common tasks

Figure 9 presents the five most common tasks in the author
contribution statement from PLoS. The radar plots suggest
that although the three types of authors all engage in the
five most common tasks, emphases vary. For instance, spe-
cialists “contribute reagents/materials/analysis tools” much
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more often than expected, while “performed experiments”
much less than expected (Figure 9a). This result suggests
that the “reagents/materials/analysis tools” task can be
more easily isolated to a single person than other tasks,
and that it is rare for an author to just perform experiments
and not participate in other tasks with others, indicating
the central role of the task of performing experiments in
scientific studies. Compared with null models, specialists
make much less contribution to performing experiments.
This might indicate that specialists are not usually imple-
menters but toolmakers in a team. On the contrary, versa-
tiles and team-players show more balanced contributions
to all the five common tasks. Despite that, the null models
suggest that versatiles contributed much less to the five
common tasks than expected, indicating their emphasis on
less common tasks. Team-players show indifferences in
null models, which could be attributed to their massive
population in our data set.

4.3.2 | Less frequent tasks

Figure 10 and Figure A1 (in the Appendix) show the par-
ticipation patterns of the less frequent tasks. Greater

disparities emerge, which have been overlooked by exis-
ting studies that focus only on a few core tasks
(e.g., Corrêa Jr et al., 2017; Larivière et al., 2016). First,
team-players participate in these activities much less fre-
quently, except for “approve the article,” which usually
occurs at the final stage of their research. “Data interpre-
tation” is another task that team-players do more fre-
quently than nonteam-players. The possible reason for
this is that data interpretation is interdependent with
data analysis, which is a team-players' major task in
Figure 9c. Similar to Figure 9c, both null models capture
almost identical patterns for less frequent tasks. Second,
specialists show a strong tendency to take the tasks like
“review article,” “revised article,” and “supervised the
research.” This might indicate that specialists can be
senior investigators in teams. Some of the following tasks,
like “principal investigator” and “provided guidance,”
also suggest our inference. The CFM confirms that spe-
cialists contributed more to these tasks as senior authors
than expected, such as “revised article” and “supervised
the research.” In addition, specialists also perform tasks
that may not be that crucial, such as “collected data” and
“collected samples.” This type of task may also suggest
that specialists can be mild collaborators (Hara et al.,

FIGURE 9 Common tasks performed by the three types of collaborators: (a), Specialists; (b), Versatiles; (c), Team-players [Color figure

can be viewed at wileyonlinelibrary.com]
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2003). As suggested by the following tasks as well, they
also take charge of “database management” and “pro-
vided technical support” (in Figure A1). CFM also con-
firms this tendency. Versatiles tend to partake in
authority-intensive and idea-intensive tasks. For exam-
ple, most of the funding-related tasks are versatiles' work.
Designing software and designing models are usually ver-
satiles' tasks. This is confirmed by our CFM. We may
infer that some versatiles are either leaders of certain pro-
jects or chief authors of the studies.

5 | CONCLUSION

In this study we proposed a refined approach—author
contribution network for each publication based on the
author contribution statements embedded in the body of
articles. It aims at better understanding scientific collabo-
ration at the task assignment level. More than 130,000
articles were collected to perform our analyses.

The results suggested that scientific collaboration
within the team could be diverse. Inspired by the con-
cepts of division of labor and specialization by Adam
Smith, we identified three types of collaborators in the
author co-contributorship network: they are called spe-
cialists, versatiles, and team-players. The three types of
collaborators form diverse teams and contribute to publi-
cations in various ways.

Team-players are the backbones in scientific studies.
They usually contribute to the five common tasks (data
analysis, performing experiments, writing articles, and
contribute materials and tools). They seldom take up
tasks with authorities (i.e., providing funding or project
supervision). Versatiles are not that common in a team as
team-players are. They are usually those who connect
collaborators in a team (with edges to other collabora-
tors) and do well in all five common tasks, with a spe-
cialty in performing experiments. They are also featured
with a high level of authorities in teams. For example,
study supervision and obtaining funding are their

FIGURE 10 Less frequent tasks performed by the three types of collaborators (more information about less frequent tasks is presented

in Figure A1) [Color figure can be viewed at wileyonlinelibrary.com]
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dominant tasks among the less frequent ones. Specialists
are special since they usually maintain such a small pop-
ulation across different team sizes. Larger teams cannot
eliminate them. Besides, they put themselves in a distinct
position of performing collaborations. They are usually
those who contribute tools, materials, and special sup-
ports. These supports can either sign their authority in a
team, like providing financial support, or their blur fig-
ures, such as technical support.

These observations can help in various ways in the
future: author credit assessment, team structure optimi-
zation, and candidate projects assessment guidance. Usu-
ally, author credit is given by the authors' byline position
either evenly or differently (Stallings et al., 2013). These
operations can be problematic sometimes when the col-
laboration between authors is not well assigned
(e.g., Sauermann & Haeussler, 2017). Given the contribu-
tions the authors performed, their roles and credits could
be given more fairly with a well-defined system of contri-
bution scoring.

Teams vary but only a few of them succeed. And they
are not simple combinations of the geniuses but of
diverse roles and complementary skills (Amabile et al.,
2001; Belbin, 2012). Our work might signify a way to
build a scientific team with consideration of members'
most frequent tasks in their earlier studies given limited
resources and expense.

Similarly, the co-contributorship network may also
help us to find patterns of success based on the character-
istic of the team members, task division and assignment,
and specialization within the teams. Thus, the funding
agencies can achieve better assessment of the team struc-
ture of the proposals according to their publication his-
tory and their roles in these studies.

However, with so many aforementioned potentials,
this study has several limitations. One is that this study
so far takes each contribution equally, while the criteria
could vary across disciplines. How to weigh different
types of contributions based on specific applications
could become an interesting area to study. Second, the
data set of this study mainly comes from natural science,
especially biology. But among the five common tasks,
“contributed reagent/materials/analysis tools” is not
common in social science. Extending data to social sci-
ence or other fields is an important next step to follow.
Third, this study only studied a collaborative team associ-
ated with a single article. It does not investigate the per-
spective of a researcher joining different teams and
playing various roles. After author names have been dis-
ambiguated, we can address fascinating questions, such
as how a scholar's career evolves based on her/his team
roles in collaborations. Fourth, collaboration is becoming
international. Taking nationalities, culture barriers,

institutional prestige, and skill diversity into consider-
ation, the division of labor can be further expanded to
the social, behavioral, and political arena, which makes it
complicated yet exciting to pursue.
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ENDNOTES
1 http://journals.plos.org/plosone/s/authorship
2 http://www.cell.com/pb/assets/raw/shared/guidelines/CRediT-
taxonomy.pdf

3 When using Equation (1) to calculate the normalized graph den-
sity, if either m or n equals one, then m × n = max(m, n). Under
this situation we decide the density is one.
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APPENDIX

FIGURE A1 Less frequent tasks performed by different collaborators [Color figure can be viewed at wileyonlinelibrary.com]
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