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Underlying Scale-Free Trees in Complex Networks
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We investigate the properties of two relatively different spanning trees of complex net-
works, so-called “communication kernel” and “response network”. First, for the communi-
cation kernel, we construct spanning trees carrying a maximum total weight of edges that
is given by average traffic, which is defined as edge betweenness centrality. It is found that
the resulting spanning tree plays an important role in communication between vertices. We
also find that the degree distribution of spanning trees shows scale-free behavior for many
model and real-world networks and the degree of the spanning trees has strong correlation
with their original network topology. For the response network, we launch an attack on a
single vertex which can drastically change the communication pattern between vertices of
networks. By using minimum spanning tree technique, we construct the response network
based on the measurement of the betweenness centrality changes due to a vertex removal.
We find that the degree distribution of the response network indicates the scale-free behav-
ior as well as that of the communication kernel. Interestingly, these two minimum spanning
trees from different methods not only have same scale-free behavior but overlap each other
in their structures. This fact indicates that the complex network has a concrete skeleton,
scale-free tree, as a basic structure.

§1. Introduction

Complex networks have attracted much attention recently because of the ad-
vances in the understanding of the highly interconnected nature of various social,
biological and communication systems.1),2) The inhomogeneity of network struc-
tures is conveniently characterized by the degree distribution Pd(k), the probability
for a vertex to have k edges toward other vertices. The emergence of scale-free (SF)
or power-law degree distribution Pd(k) ∼ k−γ has been reported in many real-world
networks, such as coauthorship networks in social systems,3) metabolic networks and
protein interaction networks in biological systems,4),5) and Internet and World Wide
Web in technological systems.6),7)

Generally, the structures of networks include many extra edges or shortcuts
for a vertex to be connected with other vertices. On the other hand, a tree has
only essential edges for connections between vertices, where failure on each vertex
leads to large damage on network. Fortunately, all real-world networks have plenty
of shortcuts, which guarantee the robustness of the network structure. However,
these shortcuts also cause mathematical difficulty in handling networks analytically.
For instance, if shortcuts exist, we cannot exactly obtain dynamical properties of
networks such as vertex and edge betweenness centrality because a global information
of network structure is required.

The spanning tree is a special subgraph which is a tree that includes all vertices
of its original network. A spanning tree can be a meaningful structure in itself
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because it is the simplest structure to connect all the vertices and can be considered
as a critical state of percolation problem. For example, a minimum spanning tree
(MST) is a widely accepted concept in weighted networks, to find optimal networks.
Although reducing networks into spanning trees may change the properties of the
original networks because many edges are to be removed, it is valuable to investigate
the properties of spanning trees and compare the spanning trees with the original
networks.

Here we focus on the two different realizations of the weights of edges, which
mainly determine the construction of spanning trees. The first one is motivated
from the concept of communication kernel or backbone network. We assign “edge
betweenness centrality” as weights of edges, which can be interpreted as average
traffic, and construct the spanning tree which maximizes the total edge betweenness
of the tree. The second one is inspired from the microarray experiments in biol-
ogy, which reflect each gene’s relative changes in its expression level under specific
conditions. Specifically, in the gene knock-out experiments, one can reconstruct the
genetic network by observing the correlation between gene expression levels after a
single gene deletion. In the analogy with this, we apply perturbations of a single
vertex removal on the network and construct a response network from the correla-
tion of betweenness centrality changes of vertex by using the minimum spanning tree
technique.

From these weighted network, we study the structural properties of two rela-
tively different spanning trees of complex networks, so-called “communication kernel”
and “response network”. First, for the communication kernel, we construct span-
ning trees with a maximum total weight of edges that is given by edge betweenness
centrality. We find that the degree distribution of spanning trees shows scale-free
behavior for many model and real-world networks and the degree of the spanning
trees has strong correlation with their original network topology. For the response
network, we launch an attack on a single vertex which can drastically change the
communication pattern between vertices of networks. By using minimum spanning
tree technique, we construct the response network based on the measurement of the
betweenness centrality changes due to a vertex removal. We find that the degree
distribution of the response network also indicates the scale-free behavior as well as
that of the communication kernel.

The paper is organized as follows. In §2, we describe the details of the method
for finding communication kernel of original networks, and its statistical properties,
including the differences and similarities of the spanning tree to its original network.
In §3, we present the secondary network which can be constructed from the response
of the original network under single vertex removal perturbation. A summary and
conclusions are given in §4.

§2. Communication kernel of complex network

In order to extract the communication kernels from networks, we reconstruct the
network which consists of relatively important edges in communication between ver-
tices, i.e., edges with high average traffic which is quantified by the edge betweenness
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centrality .8) For the simplicity of the algorithm, we study only undirected networks.
In order to select important edges from the communication perspective, we choose
the edges according to the priority of their edge betweenness centralities (BCs),8)

the average number of packets passing through the edge. The edge BC is defined as

b(i → j) =
∑
k �=l

bk→l(i → j) =
∑
k �=l

gk→l(i → j)
gk→l

, (2.1)

where gk→l(i → j) denotes the number of shortest paths from the vertex k to l
through the edge from the vertex i to j, and gk→l is the total number of shortest
paths from k to l. We construct the spanning trees with maximum total edge BC
by using the following procedures:9) (i) Calculate the edge BC of the network. (ii)
Select the edge with the highest edge BC from the unmarked edges in the network
and mark it. (iii) Add the selected edge if the selected edge does not create any loop
in the tree, otherwise reject it. Unless the tree contains all vertices, return to step
(ii).

Following the methods described above, we obtain spanning trees from various
networks including the Barabási-Albert (BA) model, the coauthorship network in
neuroscience, Internet at autonomous systems (AS) level, and the protein interaction
network (PIN) of yeast. We measure the degree distribution of each spanning tree
and compare the degree of the spanning tree with that from its original network.

Regardless of details of the construction method, it turns out that all spanning
trees show scale-free (SF) behavior in their degree distributions [see Fig. 1]. However,
the details of degree distribution depend on each original network. The exponents of
degree distributions of spanning trees are similar to those of original networks (Table
I), but they do not always agree with those of the original networks. The spanning
trees of coauthorship networks exhibit truncation or exponential decay similar to the
original networks. For the protein interaction network, SF behavior of the spanning
tree is relatively clear, even though the original network shows exponential cutoff.

In order to investigate degree correlation between spanning trees and their origi-
nal networks, we plot degrees from a spanning tree and its original networks (Fig. 2).
We find that the degrees of spanning trees (ks) and their original networks (k) roughly
follow the simple relation ks ∼ kα, which leads to the degree distribution of the span-

Table I. The scaling exponents and correlation coefficient between the spanning trees and original

networks for the BA model, the coauthorship network in neuroscience, Internet at autonomous

systems (AS) level, and the protein interaction network (PIN) of yeast. Tabulated for each

network is the system size N , the mean degree 〈k〉, the degree exponent of the spanning trees

γs and the degree correlation coefficient r between spanning trees and original networks. The

ratio of the number of edges between spanning trees and original networks f0; the ratio of edge

BC summation over the edges selected for the spanning tree to total edge BC fmst.

Network N 〈k〉 γ γs r f0 fmst Ref.

BA model 2 × 105 4 3.0(1) 2.7(1) 0.973 0.5 0.71 11)

Coauthorship 190382 12.5 2.1(1) 2.4(1) 0.538 0.16 0.46 12)

Internet AS 10514 4.08 2.1(1) 2.1(1) 0.929 0.50 0.63 13)

PIN 4926 6.55 3.2(2) 2.3(1) 0.814 0.30 0.54 14)
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Fig. 1. Spanning trees obtained by MST technique. The degree distribution of spanning trees (©)

and original networks (+) for (a) the BA model, (b) the coauthorship network, (c) Internet AS,

and (d) PIN.

ning trees P (ks) ∼ k−γs
s , γs = (γ +α−1)/α. α is estimated as 1.0±0.1. In addition,

we calculate Pearson’s correlation coefficient r between k and ks,

r =
kks − k̄k̄s√

(k2 − k
2)(k2

s − ks
2)

. (2.2)

Most networks exhibit strong correlation between the degree of the spanning tree
and its original network. In particular, in the case of spanning trees obtained by
using the minimum spanning tree technique, the BA model, Internet and protein
interaction network show a very high correlation coefficient, higher than 0.9 [see
Table I].
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Fig. 2. Scattered plot of the degree of the original network (k) and the spanning tree (ks) for (a)

the BA model and (b) Internet AS.
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Because we know that edge BC represents the average traffic over the network,
we use the minimum spanning tree technique to find the communication kernel of the
network. To verify this, we calculate the ratio f of edge BC summation over selected
edges from spanning trees to the summation over all edges in the original networks,
and we compare these quantities for the minimum spanning trees [see Table I]. If
we select the edges randomly, the ratio f0 between the edge BC summation over the
selected edges and total edge BC summation would be approximately the ratio of the
number of edges in the tree to the number of edges in the network, f0 = (N −1)/M ,
where N is the number of vertices and M is the total number of edges. However, the
real set of selected edges from the kernel spanning tree using the minimum spanning
tree technique possesses over 50% of the total edge BC of the network and, therefore
fmst � f0. Thus we can call the spanning trees constructed by using the minimum
spanning tree method the communication kernels.

Finally, we would mention that the present study of spanning trees only reflects
the partial structure of the network, because many redundant shortcuts are not con-
sidered. Therefore, to fully understand the whole structure of the network, we should
investigate the role of the shortcuts, including loop structures in the networks.10)

§3. Response network from perturbation

Typically, the genetic network can be obtained by using the correlation between
gene expression levels in the microarray experiment. For instance, a single gene dele-
tion cause the changes of whole gene expression levels, and thus through many gene
deletion experiments, one can obtain the correlation between genes. By regarding
the genes and the correlation as the vertices and the weight of edges in networks,
respectively, a weighted network is defined and often simplified to the binary network
using the minimum spanning tree techniques.

We consider the gene deletion as the vertex removal in networks and choose the
vertex BC8) for the correspondence to the gene expression level because BC is well-
defined global quantity which can be affected by any small change of the network
structure. Precisely, the vertex BC of vertex k is defined as

b(k) =
∑
i,j

bi→j(k) =
∑
i,j

gk
i→j

gi→j
. (3.1)

In Eq. (3.1), gi→j is the number of geodesic paths from i to j and gk
i→j is the number

of paths from i to j that pass through k.
To construct a response network, we calculate the BC of all vertices in the

network and store these results in memory. We denote this original BC of vertex k
as b(0)(k). Then, we choose one vertex i from the network and remove this vertex
along with all edges that are connected to vertex i. After removing vertex i, we
again calculate the BC of all remaining vertices. We denote bi(k) for the BC of
vertex k after vertex i removal and ∆bi(k) for the BC difference before and after
vertex removal. Because we are only interested in single vertex removal, we restored
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the removed vertex and repeated this procedure for each vertex in the network.

∆bi(k) = bi(k) − b(0)(k). (3.2)

After we calculate ∆bi(k) for every vertex k with vertex i removal, we construct a
matrix ∆b = (bij) [see Eq. (3.3)] from the results:

∆b =




∆b1(1) · · · ∆b1(j) · · ·
...

. . .
...

∆bi(1) · · · ∆bi(j)
...

. . .




. (3.3)

The matrix dimension is N ×N . It is similar to the adjacency matrix of a weighted
graph with N vertices, edges of which are connected to every vertex in the network
with corresponding weight bij . The weight bij represents how two vertices i and j
are related indirectly and is interpreted as the influence of the removal of vertex i to
the vertex j, which is very analogical to the gene expression level change caused by
the single gene knock-out in microarray experiments.

From this adjacency matrix ∆b, here we build the secondary network by using
the minimum spanning tree technique.9) Because it is reasonable to connect two
vertices with higher correlation (∆bij), in our simulation we choose to connect the
edge with largest weight first, to find the substructure which represents the maximum
influential network. We put an edge between a vertex and its most influential vertex,
with a constraint that every set of N vertices must be connected with only (N − 1)
edges by following the regular scheme of the minimum spanning tree construction.

From the degree distribution of secondary networks, we find that secondary
networks also show scale-free behavior [see Fig. 3]. However, the exponents are very
different from the degree exponent of the original network. The network constructed
by using MST method shows the exponent of 2.2, which is far from 3.0, the degree
exponent of the original BA network. The degree exponent of secondary networks is
similar to the exponent of BC distribution of the BA model. This might be related

Fig. 3. Degree distribution of the secondary network constructed by using the MST method.
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Fig. 4. Relation between degrees of the original network and the secondary network.

to the fact that BC changes governing secondary networks are nearly proportional
to the BC of the original networks.

We find that the resulting secondary networks have structural similarity to the
original network on comparing local properties of secondary networks, such as de-
gree and nearest neighbors, to those of the original network. The degrees of those
networks show strong correlation in Fig. 4.

§4. Summary

We investigate the structural properties of the spanning trees of various model
and real-world networks. We construct spanning trees by using the minimum span-
ning tree technique resulting in communication kernels of the original networks. We
find that the degree distribution of the spanning trees shows scale-free behavior for
many model and real-world networks. In addition, we find that the degree of the
spanning trees has strong correlation with their original network topology and the
scale-free behavior does not depend on details of the construction method employed
for the spanning trees. And we study BC changes under a vertex deletion in the

(a) (b) (c)

Fig. 5. Examples of network structures: (a) original BA network, (b) communication kernel, and

(c) response network. The thick and thin lines indicate the edges included and excluded in

spanning trees, respectively.
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BA model. We find that BC changes follow the power-law distribution, and the
secondary networks constructed by using MST method have similar local structure
to their original networks. Strong correlation between unperturbed BC and BC
changes of a vertex gives rise to the power-law distribution of BC changes. Local
similarity of secondary networks and original networks indicates that the deletion
of a vertex greatly affects BCs of nearest neighbors. Moreover, it is interesting to
note that MSTs from two different methods, communication kernel and secondary
network overlap significantly if we start from the same original network. In Fig. 5,
overlapping between two MST is about 72%, which indicates that secondary net-
work constructed from vertex removal perturbation is indeed important network,
communication kernel of original network. In many biological system, we do not
have complete information about the topology of the underlying network, therefore
we have to use indirect method to find out the topology of the network. Typical
examples include gene knock-out experiment using microarray, which is exactly what
we did to find out the underlying genetic network for constructing secondary net-
work. We believe that our theoretical method can shed a light on uncovering the
structure of the biological networks.
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