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Principled approach to the selection of the
embedding dimension of networks
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Network embedding is a general-purpose machine learning technique that encodes network

structure in vector spaces with tunable dimension. Choosing an appropriate embedding

dimension – small enough to be efficient and large enough to be effective – is challenging but

necessary to generate embeddings applicable to a multitude of tasks. Existing strategies for

the selection of the embedding dimension rely on performance maximization in downstream

tasks. Here, we propose a principled method such that all structural information of a network

is parsimoniously encoded. The method is validated on various embedding algorithms and a

large corpus of real-world networks. The embedding dimension selected by our method in

real-world networks suggest that efficient encoding in low-dimensional spaces is usually

possible.
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Neural embedding methods are machine learning techni-
ques that learn geometric representations of entities. For
instance, word embedding methods leverage the rela-

tionships between words captured in large corpora to map each
word to a vector1–3; graph embedding methods map each node to
a vector by capturing structural information in the graph4–7.
Embedding approaches have not only been pushing the perfor-
mance envelope in many tasks, such as the prediction of word
analogies and network links, but also provide a novel way to
capture semantic and structural relationships geometrically3,8–11.

In neural embedding of networks, the embedding space and
dimension do not have a special meaning as in traditional
embedding methods such as Laplacian Eigenmaps12, or hyper-
bolic space embedding13–17. Instead, the dimension is considered
as a hyperparameter of the model, which is either optimized
through a model selection process or simply chosen based on the
common practice (e.g., 100, 200, or 300 dimensions).

In word embedding, because we expect that the semantic space
of human language would not drastically vary across corpora or
languages, using common default parameters is reasonable, and
the behavior of embedding models with the dimension parameter
is rather well studied. For instance, it is common to use 100 to
300 dimensions, which are known to provide excellent perfor-
mance in various tasks without a lot of over-parametrization
risk6,18–21. By contrast, the space of graphs that we have is vast
and we expect that there is no strong universal structure that may
lead to similar optimal hyperparameters. Moreover, it is unclear
how the structural properties of networks, such as community
structure, would affect the right dimension of the model. For
instance, imagine a road network, which is naturally embedded in
a two-dimensional space. Because its geometrical nature, a sui-
table value for the embedding dimension should be close to two.
Now, imagine another network that consists of two densely
connected clusters of nodes, and only a few connections are
present between the clusters. If there is little structural difference
between the nodes within the same cluster, then even one
dimension would suffice to represent the nodes effectively.
Although the embedding dimension is one of the most important
hyperparameter of the embedding models, particularly in graph
embedding literature, it is difficult to find principled approaches
to the proper selection of this hyperparameter value. Most
existing methods use performance in downstream tasks, such as
node classification and link prediction, to perform the model
selection rather than establishing direct connections between the
embedding dimension and the structural properties of the net-
work. However, the performance for different tasks may be
optimized with a different number of dimensions. Furthermore,
it is natural to expect that the total information content of a
network dataset is task independent.

Self-contained approaches to the selection of the embedding
dimension of a network have been considered in previous papers.
Classical embedding methods based on the spectral decomposi-
tion of the adjacency matrix or other graph operators, for
example, take advantage of features of the spectrum of the
operator to select the appropriate number of eigencomponents
required to represent the graph with sufficient accuracy12,22,23.
Other approaches are based on the underlying assumption that
the network under observation is compatible with a priori given
generative model defined in the geometric space. Then, the
goodness of the fit of the observed network against the model
provides an indication of the intrinsic dimension of the network
itself. Irrespective of the specific model considered, the common
message is that low-dimensional spaces are generally sufficient to
obtain an accurate embedding of a network. In network embed-
ding in Blau space for instance, the number of dimensions
required to appropriately represent a network is expected to grow

logarithmically with the network size24–26. Empirical analyses of
large-scale social networks are in support of this claim26. Also,
Hoff et al. considered generative network models where the
probability of connection between pairs of nodes is a function of
their distance in the embedding space27. They developed nearly-
optimal inference algorithms to perform the embedding, and
show that some small-size social networks can be quasi-optimally
represented in three dimensions. We stress that expecting a low-
dimensional embedding to be able to well represent a network
does not mean that the network information is fully and exactly
encoded by the embedding. This fact was emphasized by
Seshadhri et al. who considered generic models where the prob-
ability of connection between pairs of nodes is a function of the
dot product between the vector representations of the nodes in
the embedding space28. The stochastic block model used in
community detection29–31 and the random dot product
model32,33 belong to this class of models. They mathematically
proved that low-dimensional embeddings cannot generate graphs
with both low average degree and large clustering coefficients,
thus failing to capture significant structural aspects of real-world
complex networks. The result seems, however, dependent on the
specific model considered, as a minor relaxation of the model by
Seshadhri et al. leads to exact low-dimensional factorizations of
many real-world networks34.

Here, we contribute to the literature on the subject by pro-
posing a principled technique to choose a proper dimension value
of a generic network embedding, and examine the relationships
between structural characteristics and the chosen value of the
embedding dimension. Our method does not aim at identifying
the intrinsic dimension of a given network, rather the proper
value of the space dimension of a given network according to a
given embedding algorithm. Different embedding models applied
to the same network may lead to different values of the selected
embedding dimension. To this end, we follow a route similar to
the recent study on word embedding dimension by Yin et al.20.
Yin et al. proposed a metric, Pairwise Inner Product (PIP) loss
function, that compares embeddings across different dimensions
by measuring pairwise distances between entities within an
embedding. By using this metric, they argued that a suitable value
for the embedding dimension can be identified as the one cor-
responding to the optimal balance between bias and variance.
Here, we extend the approach to the embedding of networks by
proposing an alternative metric to quantify the amount of
information shared by embeddings of different dimensions. We
show that the content of structural information encoded in the
embedding saturates in a power-law fashion as the dimension of
the embedding space increases, and identify the proper value of
the embedding dimension as the point of saturation of our metric.
We evaluate our method by employing multiple embedding
techniques, a host of real-world networks, and downstream
prediction tasks.

Results
Embedding dimension and performance in detection tasks. To
compare embeddings of the same network obtained for different
values of the embedding dimension d, we use the normalized
embedding loss. We first set a reference dimension dr, which we
consider sufficiently large to capture the information stored in the
original network. We then compute the embedding matrix V(d)

for d < dr and use Eq. (6) to evaluate the normalized embedding
loss function at dimension d as LðdÞ :¼ LðV ðdÞ;V ðdrÞÞ. Specifically,
for graphs with less than N= 500 nodes, we set the reference
value dr=N and for graphs with more than N= 500 nodes, we
set dr= 500. The latter choice is made for convenience to avoid
computational issues. Also, we stress that the choice of the
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reference value dr is not so crucial as long as dr is large enough
(Supplementary Fig. 1).

We stress that some embedding algorithms contain stochastic
components (e.g., due to random sampling procedures), so that
the embedding V(d) obtained for a given dimension d may be not
the same over different runs of the algorithm on the same
network. We neglect this fact in the analysis performed in this
section. We will illustrate how fluctuations affect our method in
the selection of the embedding dimension below.

In the above recipe, we assume that the geometric representa-
tion obtained for d= dr is the most accurate representation that
the embedding algorithm can obtain for the network. Such an
assumption is obviously true for spectral algorithms of dimen-
sionality reduction such as LE in dr=N dimensions, since the
network topology can be exactly reconstructed from the full
spectral decomposition of the normalized graph Laplacian. Any
LE embedding in d <N dimensions is necessarily a lossy
representation of the network. Particularly for LE, the amount
of topological information lost by suppressing some eigencom-
ponents is a function of the eigenvalues of the normalized graph
Laplacian. For other non-spectral embedding methods, similar
assumptions should hold. The best geometric representation of a
network, ideally a lossless representation, that an embedding
method can achieve requires a space of dimension equal to the
size of the network itself. The quality of a lower-dimensional
embedding is quantified in terms of the information lost with
respect to the most accurate embedding achievable by the
embedding method on the network at hand.

An example of the application of our method is reported in
Fig. 1a for the network of the American college football. Here, we
use node2vec to obtain the embeddings. The reference value
for this graph is dr= 115, where N= 115 is the number of nodes.

As d increases, L(d) smoothly decreases toward an asymptotic
value close to zero. This fact indicates that, as we increase the
dimension d of the embedding, the resulting geometric
representations become similar to the one obtained for the
reference value dr. The saturation at high values of the embedding
dimension is not due to degeneracy of the cosine similarity metric
(Supplementary Fig. 2). As the embedding dimension grows the
distribution of pairwise cosine similarities converges to a stable
distribution with finite variance. Note that L(d) is already very
close to the asymptotic value for d≃ 10, suggesting that the
representation obtained by node2vec at d= 10 is already able
to capture the structural features (pairwise distance relationships)
of the network from the perspective of node2vec. Of course,
this observation does not mean that 10 dimensions are sufficient
to fully describe the observed network. It simply tells us that
increasing the dimension d of the embedding space is super-
fluous, in the sense that it does not significantly augment what
node2vec is able to learn about the network.

This statement is further supported by our experiments on the
performance in link prediction obtained for different values of the
embedding dimension d, as illustrated in Fig. 1c. The accuracy in
predicting missing links based on d-dimensional embeddings
behaves almost exactly as L(d). Increasing d is useful up to a
certain point. After that, there is no additional gain in prediction
accuracy. The saturation of the link prediction accuracy arises
earlier than the one observed for L(d). This fact may be expected
as there should be potentially more information in a geometric
embedding than the one actually used in the link prediction task.

The analysis of the Cora citation network allows us to draw
similar conclusions (Fig. 1b). Still, we see that L(d) quickly
decreases to an asymptotic value as d increases. Furthermore, it
seems that d≃ 45 dimensions are more than enough to provide a

Fig. 1 Geometric embedding of real-world networks. a Normalized embedding loss as a function of the embedding dimension for the American college
football network. Blue circles refer to numerical results obtained from node2vec; red stars refer to embeddings obtained with the LINE algorithm; the
blue curve represents the best fit of Eq. (2) with the data points obtained with node2vec embeddings. We find ŝ ¼ 1:806, α̂ ¼ 1:468 and L̂1 ¼ 0:036.
The good quality of the fit is testified by the fact that the mean-squared error R2= 4.252 × 10−4. c AUCROC score of link prediction with the node2vec
embedding as a function of the embedding dimension for the American college football network. Symbols represent average values of the AUCROC score
over 10 random sub-sampling validation tests, while the shaded region identifies values within one standard deviation away from the mean. b Same as in
(a), but for the Cora citation graph. The best fit of the data points with Eq. (2) is obtained for ŝ ¼ 1:030, α̂ ¼ 0:801 and L̂1 ¼ 0:048 (mean-squared error
R2= 1.113 × 10−4). d Same as in panel c, but for the Cora citation graph. A similar analysis has been performed for other real-world networks, see
Supplementary Fig. 11.
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sufficiently accurate geometric representation of the network that
contains almost all the structural features that node2vec is able
to extract from it. Also, the behavior of L(d) predicts pretty well
how the accuracy in link prediction grows as a function of the
embedding dimension d (Fig. 1d).

If we repeat the same analysis using the LINE algorithm35,
although the rate of decay of the function L(d) is not identical for
the two embedding algorithms, we find analogous behavior with
L(d) smoothly decaying toward an asymptotic value as d increases
(Fig. 1a, b). However, a faster decay doesn’t necessarily imply that
the corresponding algorithm is able to represent more efficiently
the network than the other algorithm. The reference embeddings
used in the definition of L(d) are in fact algorithm dependent, and
the quantitative comparison between the L(d) functions of two
different algorithms may be not informative.

Similar observations can be made when we perform the
geometric embedding of synthetic networks. In Fig. 2, we display
L(d) for networks generated according to the SB model. We still
observe a saturation of the function L(d). Graph clustering
reaches maximal performance at slightly smaller d values than
those necessary for the saturation of L(d), and slowly decreases
afterwards. The drop of performance for values of the embedding
dimension that are too large has been already observed in other
papers, see for example refs. 35,36. Results based on LE embedding
provide similar insights (Supplementary Figs. 3–6): L(d) saturates
quickly as d increases; the performance in the graph clustering
task is optimal before the saturation point of L(d); further, the
saturation point is compatible with the presence of a significant
gap in the sorted Laplacian eigenvalues.

As we already mentioned it, we tested the robustness of our
findings for different choices of the value of the reference
dimension dr (Supplementary Fig. 1). We find that as long as dr is
large enough, then the function L(d) is basically unaffected by the
specific choice made. Furthermore, we compared our loss
function with the PIP loss function20 (Supplementary Fig. 7).
The functions behave in a qualitatively similar manner, displaying
a clear decay toward an asymptotic value as the embedding
dimension increases. The normalized loss function introduced
here has the advantage of looking smoother than the PIP loss
function, thus allowing for a mathematical description that
requires less parameters.

Finally, we fed the k-means algorithm with GraphSAGE
embeddings to detect the community structure of some real-
world networks (Supplementary Fig. 8). We found that the

identified partition of a network does not significantly change if
the network is embedded in a dimension larger than a certain
threshold, and that such a threshold value is well predicted by the
point of saturation of the normalized loss function associated
with the GraphSAGE embeddings of the network. Similarly,
node classification tasks based on GraphRNA embeddings reach
stable performance if the dimension of the embedding is larger
than a threshold (Supplementary Fig. 9). Such a threshold is well
localized as the point of saturation of the normalized loss function
of the GraphRNA network embeddings.

Principled selection of a suitable value for the embedding
dimension. The observed behavior of the loss function L(d)
indicates that embedding algorithms may generate sufficiently
accurate geometric descriptions with a relatively small value of d.
Assuming that the plateau value L∞ of the loss function L(d)
corresponds to the best geometric description that the embedding
algorithm can achieve, we indicate with

doðϵÞ ¼ arg min
d

LðdÞ � L1 < ϵ
� �

; ð1Þ

the minimal d value such that the difference between L(d) and the
optimum L∞ is less than ϵ. As already stated, a key implicit
assumption here is that the empirically trained max-dimensional
embedding is the best achievable by the algorithm. do(ϵ) is then
the best choice for the embedding dimension that can be made to
achieve a geometric representation that uses less training time
and computational resources but is still sufficiently similar (i.e.,
within an ϵ margin) to the best achievable representation of the
network. Our formulation of the problem does not explicitly
account for the fact that the network at hand may be a specific
realization of some underlying stochastic model which the
embedding method may rely on. Rather, Eq. (1) defines a low-
rank approximation problem, meaning that we aim at finding the
low-dimensional (i.e., low-rank) approximation that best
describes the high-dimensional (i.e., full-rank) embedding matrix.
We differentiate from the standard setting considered in low-rank
approximation problems in two main respects. First, we do not
rely on a standard metric of distance (e.g., Frobenius distance)
between the low- and the full-rank embedding matrices. Instead,
we make use of a measure of collective congruence between the
embeddings, i.e., Eq. (6). The normalized embedding loss func-
tion is equivalent to a metric of distance between matrices only
for spectral embedding methods such as LE. However, the

Fig. 2 Geometric embedding of synthetic networks. a Normalized loss as a function of the embedding dimension in SB networks. We generate graph
instances composed of N= 256 nodes and C= 16 groups with pin= 0.2 and pout= 0.02. Embedding is performed using node2vec. The blue curve in panel
a is the best fit curve of Eq. (2) (̂s ¼ 1:323, α̂ ¼ 0:990, L̂1 ¼ 0:019 and R2= 5.93 × 10−3) with the data points. b Test of performance in recovering the
ground-truth community structure in SB graphs as a function of the dimension of the embedding. We measure the recovery accuracy with normalized
mutual information (NMI). Symbols refer to average values of NMI computed over 10 instances of the SB model; the shaded region identifies the range of
values corresponding to one standard deviation away from the mean.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23795-5

4 NATURE COMMUNICATIONS |         (2021) 12:3772 | https://doi.org/10.1038/s41467-021-23795-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


equivalence is not immediate for arbitrary embedding methods.
Second and more important, in a standard low-rank approx-
imation, one generally aims at finding the best low-rank reduc-
tion of a full-rank matrix by constraining the maximum rank
of the approximation. In our case instead, we seek the best
rank reduction constrained by a maximum amount of tolerated
discrepancy between the low- and the high-dimensional
embeddings.

There could be several ways of finding the solution of Eq. (1).
Here, given the smoothness of the empirically observed loss
functions, we opted for a parametric approach. Specifically, we
found that

LðdÞ ¼ L1 þ s
dα

; ð2Þ
where s and α are fitting parameters, represents well the data in
various combinations of embedding methods and embedded
networks. Equation (2) is meant to describe the mathematical
behavior of the loss function only in the range d∈ [1, dr). In
particular in the definition of Eq. (2), L∞ appears as the value of
the normalized loss function in the limit of infinitely large
embedding dimensions. However, such a limit has no physical
meaning and is used only to facilitate the mathematical
description of the empirical loss function in the regime d≪ dr.
Best fits, obtained by minimizing the mean-squared error, of the
function of Eq. (2) are shown in Figs. 1a, b and 2a. We performed
a systematic analysis on a corpus of 135 real-world networks. We
found that best estimates L̂1 of the asymptotic value L∞ for the
normalized embedding loss function are generally close to zero
(Supplementary Table 1). Best estimates ŝ of the factor s,
regulating the rate of the power-law decay toward L∞, seem very
similar to each other, irrespective of the network that is actually
embedded. Measured values of ŝ indicate only a mild dependence
on the underlying network (see Fig. 3). For uncorrelated clouds
of points in d dimension, the central limit theorem allows us
to predict that L(d) ~ 1/d1/2. Our best estimates α̂ of the decay
exponent α are generally greater than those expected for
uncorrelated clouds of data points, indicating that the embedding

algorithm correctly retains network structural information even
in high-dimensional space. In systematic analyses performed on
random networks constructed using either the ER and the BA
models, we find that the size of the network is not an important
factor in determining the plateau value L∞. The decay exponent α
and the rate s are positively correlated with density of the
embedded network, but their values become constant in the limit
of large network sizes (see Fig. 4).

Assuming the validity of Eq. (2), the solution of Eq. (1) for
do(ϵ) can be written as

doðϵÞ ¼
s
ϵ

� �1=α
: ð3Þ

The best estimate d̂oðϵÞ is calculated using the knowledge of the

best estimates ŝ and α̂ as d̂oðϵÞ ¼ ŝ=ϵ
� �1=α̂

. Values d̂oðϵÞ measured
in real-world networks for ϵ= 0.05 are reported in the
Supplementary Table 1. In Fig. 3, we display the cumulative
distribution of d̂oðϵ ¼ 0:05Þ over the entire corpus. For all
networks in our dataset, we find that d̂oðϵ ¼ 0:05Þ ≤ 218. The size
N of the network is an upper bound for do(ϵ). However for
sufficiently large networks, estimated values of d̂oðϵÞ do not
display any clear dependence on N. Specifically, for roughly 40%
of the real networks d̂oðϵ ¼ 0:05Þ=N < 0:01, and for 80% of the
real networks, d̂oðϵ ¼ 0:05Þ=N < 0:1 (see Fig. 3).

The definition of the loss function provided in Eq. (6) uses
cosine similarity to compare pairs of embeddings, tacitly
assuming that the metric well represents distance of nodes in
the embedding space. However, one may argue that this is not
the case28, and the outcome of the analysis may depend on the
specific metric of distance adopted. For example, if the
embedding is obtained by fitting an observed network against a
generative network model, then the exact definition of connection
probability in the model as a function of the distance between
points in the space may play a fundamental role in properly
embedding a network27. We therefore tested the robustness of
our findings against different choices for the distance metric in

Fig. 3 Principled selection of the embedding dimension of real-world networks. a Distribution of ŝ over the corpus of 135 real-world networks considered
in this paper. b Same as in panel a, but for α̂. c Complementary cumulative distribution of d̂oðϵÞ, with ϵ= 0.05. d Complementary cumulative distribution of
the best estimate d̂oðϵÞ rescaled by the network size N.
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the embedding space (Supplementary Fig. 10). In our tests, we
simply replace cosine similarity with another metric (e.g.,
Euclidean, correlation, and Chebyshev distances), and then look
at how the normalized embedding loss changes as a function of
the embedding dimension. We find that some differences are
visible in small networks (e.g., the American college football);
instead the curves obtained for large networks (e.g., Cora citation
and Citeseer citation) are robust against the choice of the metric.
We stress that the asymptotic value of the loss function is
different from metric to metric, suggesting that some metric may
be better at encoding pairwise similarity among nodes in the
embedding space. This finding is perfectly in line with results by
Hoff and collaborators27. However, the saturation of the content
of information is similar irrespective of the actual distance metric
adopted, supporting our main claims.

Similar conclusions can be made by looking at the values of
d̂oðϵÞ obtained for node2vec and LE embeddings of synthetic
networks with pre-imposed community structure (Supplementary
Figs. 3–6). While there is a distinction between the actual value of
the estimates d̂oðϵÞ for the two embedding methods, everything
else is consistent. Specifically, the loss function L(d) saturates as
the embedding dimension increases. After the saturation, the
performance in graph clustering doesn’t improve anymore. For
the LE embedding, the dimension value of the saturation roughly
corresponds to the point where a neat gap between the
eigenvalues of the graph normalized Laplacian is visible. The
location of a neat gap among the eigenvalues of a graph operator
is the standard approach for the identification of a suitable value
for the embedding dimension in spectral dimensionality reduc-
tion methods. Our results indicate that the value of d̂oðϵÞ is not
dependent on the specific metric used.

Embedding dimension and variance of network embeddings.
Our definition of do(ϵ) of Eq. (1) corresponds to the minimal
embedding dimension necessary to learn the structure of a net-
work with a sufficient level of accuracy. However, we are not in
the position to tell if the desired level of accuracy is reached

because the embedding algorithm is actually encoding the net-
work structure in an optimal way, or instead the algorithm is over
fitting the network. In this section, we perform a simple analysis
in the attempt of providing some clarifications regarding this
aspect of the problem.

We rely on the embedding coherence function of Eq. (7) to
quantify the accuracy of a given algorithm to embed a network in
d dimensions. Specifically, we apply node2vec K= 10 times to
the same network for every value of the embedding dimension d
to obtain a set of embeddings V ð1Þ

d ; ¼ ;V ðKÞ
d . Here, the diversity

of the embeddings is due to the stochastic nature of the algorithm
that relies on finite-size samples of random walks to embed the
network. We then quantify the embedding coherence S2(d) of the
algorithm at dimension d using the embedding coherence
function of Eq. (7) as S2ðdÞ :¼ S2ðV ð1Þ

d ; ¼ ;V ðKÞ
d Þ.

Figure 5 shows how S2(d) behaves as a function of d for the
same of the networks as we considered earlier. S2(d) is a non-
monotonic function of d, showing a minimum value at a certain
dimension d. We note that S2(d) decrease quickly toward its
minimum, but it slowly increases afterwards. This finding concurs
with previous observations that using higher-than-necessary
dimensions does not critically affect the usefulness of the
embeddings and may explain why the performance of embedding
algorithms in tasks such as link prediction (Fig. 1) and graph
clustering (Fig. 2) doesn’t deteriorate as d grows.

Discussion
In this paper, we proposed a principled solution to the problem of
defining and identifying a suitable value of the embedding
dimension of graphs. Our method is an extension to network data
of the technique introduced by Yin et al.20 in word embedding.
The spirit of the approach is similar to the one adopted in spectral
methods for dimensionality reduction, where a lossy representa-
tion of a network is obtained by suppressing an arbitrary number
of eigencomponents of a graph operator (e.g., combinatorial and
normalized Laplacians, adjacency matrix). The amount of infor-
mation lost by neglecting some of the eigencomponents is a

Fig. 4 Dependence in the selection of the embedding dimension from network size and density. a ŝ as a function of the network size N in the BA model.
We control the network size and change network density of BA model by choosing different number of edges to attach from a new node to the existing
nodes. c α̂ as a function of the network size for the same networks as in (a). b, d Same as in panels a and c, respectively, but for the ER model. Here, we
control the density of the graphs by tuning the link probability p between different nodes.
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function of the eigenvalues of the operator used in the reduction,
and represents the main criterion to assess the effectiveness of the
reduction itself. We generalize such an idea to an arbitrary graph
embedding method. Accordingly, the effectiveness of an embed-
ding in a low-dimensional space is measured as the ability to
reproduce as closely as possible the best network representation
that the embedding method can achieve. We assume that the best
representation is obtained when the network is embedded in a
space with dimension equal to the size of the network itself. We
then measure the amount of information lost by reducing the
dimension of the network representation. Finally, we identify a
reasonable value of the embedding dimension, namely do(ϵ), as
the smallest dimension value able to provide a sufficiently accu-
rate (i.e., within an ϵ margin) representation of the network
structure.

We validated the approach in two different ways. First, we
applied it to embeddings based on the spectrum of the normal-
ized graph Laplacian12, and recovered values of do(ϵ) compatible
with those obtained through well-established spectral criteria.
Second, we validated the method by applying it to the cases where
we could estimate the performance of embeddings in downstream
tasks. We found that the embedding dimension value determined
by our method roughly corresponds to the dimension value
where the performance of standard tasks such as link prediction
and graph clustering saturates to its maximum value. After vali-
dating it, we applied the method systematically to a large col-
lection of real-world networks, finding that the estimated do(ϵ) is
much smaller than the number of nodes in the network.

In relation to the existing debate on the dimensionality of
networks28,34, we believe that our method may serve to provide
an ex-post estimate for the network intrinsic dimension. If the
loss function approaches zero for d̂o ¼ d̂oðϵ ¼ 0Þ, then it means
that the exact representation of the network (i.e., the one valid for
d=N) may be obtained in a d̂o-dimensional space. However, one
cannot exclude the existence of a better method able to perfectly
embed the same network in a space with d < d̂o dimensions. Our
systematic analysis of a corpus of 135 real-world networks bol-
sters the idea that the actual number of dimensions that are
needed to describe the structure of a network is typically low25–27.

Methods
Networks. In this paper, we focus our attention on unweighted and undirected
networks. The topology of a given network with N nodes is described by its N ×N
adjacency matrix A. The entry Aij= Aji= 1 if a connection from node i to node j
exists, whereas Aij= Aji= 0, otherwise.

Empirical networks. We consider a corpus of 135 network datasets. Sizes of these
networks range from N= 16 to N= 1, 965, 206 nodes. We consider networks from
different domains, including social, technological, information, biological, and

transportation networks (Supplementary Table 1). We ignore directions and
weights of the edges, thus making every network undirected and unweighted. For
illustrative purposes, we explicitly consider two real-world networks: the American
college football network37 and the Cora citation network38. The American college
football network is a network composed of N= 115 nodes and M= 613 edges.
Each node is a college football team. Two teams are connected by an edge if they
played one against the other during the season of year 2000. The Cora citation
network is composed of N= 2, 708 nodes and M= 5, 429 edges. Each node is a
scientific paper and edges represent citations among papers.

Network models. In addition to the empirical networks, we consider three network
generative models: the Erdős-Rényi (ER) model39, the Barabási-Albert (BA)
model40, and the stochastic block (SB) model29.

First, the ER model generates random networks with a Poisson degree
distribution with average 〈k〉=Np. Here, N is the total number of nodes and p is
the connection probability among pairs of nodes.

Second, the BA model is a growing network model that generates graphs
obeying power-law degree distributions P(k) ~ k−γ, with degree exponent γ= 3. To
generate a single instance of the model, we specify the total number of nodes N of
the network, and the number of edges m that each node introduces to the network
during the growth process (the total number of edges in the network is M=Nm).

Finally, the SB model generates random networks with pre-imposed block
structure, which solely determines the connection probabilities between nodes.
Here, we implement the simplest version of the model, where N nodes are divided
into C groups of identical size N/C. Pairs of nodes within the same group are
connected with probability pin; pairs of nodes belonging to different groups are
connected with probability pout. The total number of edges in the network is
approximated by M=N/Cpin+ (C− 1)N/Cpout.

Network embedding algorithms. The embedding in a d-dimensional space of a
network with N nodes is fully specified by the embedding matrix V 2 RN ´ d . The i-
th row of the matrix V is the vector Vi,⋅ containing the coordinate values of node i
in the embedding. The entire procedure described in this paper can be applied to
any embedding technique. Here, as a proof of concept and to ensure the robustness
of the results, we consider five different embedding algorithms: node2vec5,
LINE35, Laplacian Eigenmaps (LE)12, GraphSAGE19 and GraphRNA18.
We center the embedding matrix V so that ∑N

i¼1 Vi;s ¼ 0, for all s= 1,…, d.

node2vec5 is a popular network embedding algorithm that builds on the
word2vec algorithm3 by taking the following analogy: nodes in the network are
considered as “words”; a sequence of nodes explored during a biased random walks
is considered as a “sentence.” In our analysis, we fix the number of walks per node
to 20, the walk length to 10, the number of iterations to 10, and the parameters that
bias the random walk toward a breadth-first or depth-first walk both equal to 1.
The latter condition makes the embedding algorithm similar to DeepWalk4.

LINE35 is another popular embedding algorithm that aims at identifying
embeddings that preserve first- and second-order neighborhood information. We
use the default values for the algorithm parameters: the order of the proximity was
set to 2, the number of negative samples to 5, and the initial learning rate to 0.025.

Laplacian Eigenmaps (LE)12 is a classical embedding method based on the
spectral decomposition of the graph Laplacian up to a desired eigencomponent.
The importance of the various eigencomponents is inversely proportional to the
magnitude of the corresponding eigenvalue (excluding the first trivial eigenvalue
equal to zero), so that LE embedding up to a given dimension corresponds to

Fig. 5 Embedding variance in real networks. a Variance as a function of the embedding dimension d. Results are valid for node2vec embeddings of the
American college football network. b Same as in panel a, but for the Cora citation network. A similar analysis has been performed for other real-world
networks, see Supplementary Fig. 12.
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representing each node using the components of the ranked eigenvectors up to the
given dimension value.

GraphSAGE19 is an inductive framework for computing node embeddings in an
unsupervised, supervised, or semisupervised way. Instead of training individual
embeddings for each node, GraphSAGE learns a function that generates
embeddings by sampling and aggregating features from the nodes’ local
neighborhoods. There are several ways for aggregating feature information from
the nodes’ neighbors. Here, we choose the mean aggregator (GraphSAGE-mean),
which takes the element-wise mean of the representation vectors of a node’s
neighbors. GraphSAGE is based on the Graph Neural Network (GNN)
framework. We interpret the number of hidden units in the last layer of the
unsupervised GraphSAGE as the embedding dimension. In our experiments, we
vary the number of units of the last layer while keeping other parameters
unchanged.

GraphRNA18 learns node representations for networks with attributes by feeding
bidirectional Recurrent Neural Networks (RNNs) with random walk sequences. In
our experiments, we apply the node classification task to evaluate its embedding
performance. The number of neural units of the last layer of the bidirectional
RNNs is set equal to the number of classes of the nodes in the network. All
parameters of the embedding algorithm are kept unchanged, but we vary the
number of hidden units in the second-last layer of the bidirectional RNNs. We
interpret the number of units in the second-last layer as the embedding dimension.

Task-based evaluation of network embedding methods. We consider three
quantitative evaluation tasks: link prediction, graph clustering and node classifi-
cation. All tasks are considered as standard tests for the evaluation of the perfor-
mance of graph embedding methods7,18,41.

Link prediction. For the link prediction task, we use the repeated random sub-
sampling validation by applying the following procedure 10 times. We report
results corresponding to the AUCROC score (the area under a receiver operating
characteristic curve) over these repetitions. We first hide 10% of randomly chosen
edges of the original graph. The hidden edges in the original graph are regarded as
the “positive” sample set. We sample an equal amount of disconnected vertex pairs
as the “negative” sample set. The union of the “positive” and “negative” sample sets
form our test set. The training set consists of the remaining 90% of connected node
pairs and an equal number of randomly chosen disconnected node pairs. We use
the training set to learn the embedding and determine the embedding of the nodes.
Furthermore, we use the training set to learn the probability of connection between
pairs of nodes given their embedding. Specifically, for every pair of nodes i and j in
the training set, we evaluate the Hadamard product eij= Vi,⋅ ⊙Vj,⋅. Note that eij is a
d-dimensional vector. We assume that the probability of connection between nodes
i and j is given by

pijðeij; θÞ ¼
1

1þ expð�eTij θÞ ð4Þ

where θ is a d-dimensional parameter vector, and eTij θ is the dot product between
the vectors eij and θ42. The best estimate of the entries of vector θ are obtained from
the training set via logistic regression. In absence of training when all components
of the vector θ are identical and positive, the probability of Eq. (4) is proportional
to the dot product between the vectors Vi,⋅ and Vj,⋅. We use Eq. (4) to rank edges of
the test set and evaluate the AUCROC score of the link prediction task.

Graph clustering. We take advantage of the SB model to generate graphs with pre-
imposed cluster structure. We consider various combinations of the model para-
meters, N, C, pin and pout.

We then perform the embedding of the graph using information from its
adjacency matrix only. To retrieve clusters of nodes emerging from the embedding,
we use the k-means clustering algorithm43. In the application of the clustering
algorithm, we provide additional information by specifying that we are looking for
exactly C clusters. The retrieved clusters of nodes are compared against the true
clusters imposed in the construction of the SB model. Specifically, we rely on the
normalized mutual information (NMI) to measure the overlap between the
ground-truth clusters and the detected clusters44. Values of NMI close to one
indicate an almost perfect match between the two sets; NMI equals zero if detected
and ground-truth clusters have no relation.

Also, we apply graph clustering to real-world networks. We still identify clusters
via the k-means algorithm applied to graph embeddings. The retrieved clusters of
nodes are compared against the clusters identified by the popular community
detection method Infomap45. In the application of the k-means algorithm, we
specify that we are looking for a number of clusters equal to the number of
communities found by Infomap. NMI is used is to quantify the level of similarity
between the clusters identified by the two methods.

Node classification. In the node classification task, given the embedding matrix V
and the labels of all nodes, we first randomly select 90% of the node representations

from V to form the training set. The remaining 10% of the nodes constitutes the
test set. Within the training set, we randomly select 10% of the node representa-
tions to form the validation set. To conduct the node classification task, we leverage
the training set and the corresponding labels to train a multilayer perceptron
classifier and use the validation set to fine tune some hyperparameters. The micro
average metric is used to quantify the accuracy of the node classification over the
test set. The results of the node classification task reported in our paper are given
by the arithmetic average over 10 independent runs of the above procedure.

Evaluation metrics of network embeddings. Here, we define two metrics for
assessing the quality of network embeddings.

Normalized embedding loss function. We define a loss function similar to the
Pairwise Inner Product (PIP) loss function used for word embeddings20. The
metric can be used to compare any pair of embeddings, regardless of the way they
are obtained, as long as they refer to the same network with the same set of nodes.
The function takes two inputs V(a) and V(b), respectively representing the matrices
of the embeddings a and b that we want to compare. We preprocess each of these
matrices by calculating the cosine similarity between all node pairs. For the
embedding matrix V(a), we compute

CðV ðaÞÞ ¼ V ðaÞ ½V ðaÞ�T : ð5Þ
A similar expression is used to compute C(V(b)) for the embedding matrix V(b). As
we already stated, the embedding matrices V(a) and V(b) are appropriately centered
to account for fact that cosine similarity is not a translation-invariant metric. C(V
(a)) is a N ×N matrix that captures the pairwise similarity between nodes;
½CðV ðaÞÞ�i;j corresponds to the cosine similarity between nodes i and j in the
embedding V(a).

The normalized embedding loss function L(V(a),V(b)) is defined as the average,
over all possible node pairs, of the absolute difference values between the cosine
similarity of the two embeddings, i.e.,

LðV ðaÞ;V ðbÞÞ ¼ 2
NðN � 1Þ ∑

i<j
½CðV ðaÞÞ�i;j � ½CðV ðbÞÞ�i;j

���
���: ð6Þ

L(V(a),V(b))= 0 if the two embeddings a and b are equivalent. We expect instead L
(V(a),V(b)) ≃ 2 if the two embeddings represent two radically different
representations of the network.

Cosine similarity is chosen for its simplicity. We verify that the use of other
similarity/distance metrics in the normalized embedding loss function of Eq. (6) in
place of cosine similarity provides outcomes qualitatively similar to those reported
in the paper (Supplementary Fig. 10).

Embedding variance. Another metric that we use is “embedding variance,” which
estimates the level of coherence among a set of multiple embeddings of the same
network. The metric takes a set {V(1),V(2),…,V(K)} of K embedding matrices of the
same network as its input and calculates the average value of the variance of the
node pair similarities across the embeddings. We obtain the cosine similarity
matrix C(V(k)) for each of the k= 1,…, K embeddings using Eq. (5). We compute
the embedding variance as

S2ðV ð1Þ;V ð2Þ; ¼ ;V ðKÞÞ ¼ 1
K

∑
K

k¼1
∑
i<j

½CðV ðkÞÞi;j � hCi;ji�
2
; ð7Þ

where

hCi;ji ¼
1
K

∑
K

k¼1
CðV ðkÞÞi;j

is the average value of the cosine similarity of the nodes i and j over the entire set of
embeddings. Equation (7) equals the variance of the cosine similarity over all pairs
of nodes in all embeddings. S2(V(1),V(2),…,V(K))= 0, if the embeddings are such
that the cosine similarity of all node pairs is always the same across the entire set of
embeddings. High values of S2(V(1),V(2),…,V(K)) indicate low coherence among
the embeddings in the set. Note that, contrary to Eqs. (6) and (7) applies only to
embeddings of the same dimension.

Data availability
All network datasets considered in this paper have been obtained from http://konect.cc/
networks/. We include complete information on how to obtain individual datasets in
Supplementary Table 1.

Code availability
The Python script used for this project is available online at https://zenodo.org/record/
4757121#.YKKPLC-cZp846.
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